Trait diffgeom::metric::MetricSystem
[−]
[src]
pub trait MetricSystem: CoordinateSystem where
Self::Dimension: Pow<U2> + Pow<U3>,
Exp<Self::Dimension, U2>: ArrayLength<f64>,
Exp<Self::Dimension, U3>: ArrayLength<f64>, { fn g(point: &Point<Self>) -> TwoForm<Self>; fn inv_g(point: &Point<Self>) -> InvTwoForm<Self> { ... } fn dg(
point: &Point<Self>
) -> Tensor<Self, (CovariantIndex, (CovariantIndex, CovariantIndex))> { ... } fn covariant_christoffel(
point: &Point<Self>
) -> Tensor<Self, (CovariantIndex, (CovariantIndex, CovariantIndex))> { ... } fn christoffel(
point: &Point<Self>
) -> Tensor<Self, (ContravariantIndex, (CovariantIndex, CovariantIndex))> { ... } }
Trait representing the metric properties of the coordinate system
Required Methods
Provided Methods
fn inv_g(point: &Point<Self>) -> InvTwoForm<Self>
Returns the inverse metric tensor at a given point.
The default implementation calculates the metric and then inverts it. A direct implementation may be desirable for more performance.
fn dg(
point: &Point<Self>
) -> Tensor<Self, (CovariantIndex, (CovariantIndex, CovariantIndex))>
point: &Point<Self>
) -> Tensor<Self, (CovariantIndex, (CovariantIndex, CovariantIndex))>
Returns the partial derivatives of the metric at a given point.
The default implementation calculates them numerically. A direct implementation may be desirable for performance.
fn covariant_christoffel(
point: &Point<Self>
) -> Tensor<Self, (CovariantIndex, (CovariantIndex, CovariantIndex))>
point: &Point<Self>
) -> Tensor<Self, (CovariantIndex, (CovariantIndex, CovariantIndex))>
Returns the covariant Christoffel symbols (with three lower indices).
The default implementation calculates them from the metric. A direct implementation may be desirable for performance.
fn christoffel(
point: &Point<Self>
) -> Tensor<Self, (ContravariantIndex, (CovariantIndex, CovariantIndex))>
point: &Point<Self>
) -> Tensor<Self, (ContravariantIndex, (CovariantIndex, CovariantIndex))>
Returns the Christoffel symbols.
The default implementation calculates them from the metric. A direct implementation may be desirable for performance.