self_adaptive_de

Function self_adaptive_de 

Source
pub fn self_adaptive_de<F>(
    min_max_pos: Vec<(f32, f32)>,
    cost_function: F,
) -> Population<F, XorShiftRng>
where F: Fn(&[f32]) -> f32,
Expand description

Convenience function to create a fully configured self adaptive differential evolution population.

Examples found in repository?
examples/simple.rs (lines 16-19)
13fn main() {
14    // create a self adaptive DE with an inital search area
15    // from -10 to 10 in 5 dimensions.
16    let mut de = self_adaptive_de(vec![(-10.0, 10.0); 5], |pos| {
17        // cost function to minimize: sum of squares
18        pos.iter().fold(0.0, |sum, x| sum + x*x)
19    });
20
21    // perform 10000 cost evaluations
22    de.iter().nth(10000);
23    
24    // show the result
25    let (cost, pos) = de.best().unwrap();
26    println!("cost: {}", cost);
27    println!("pos: {:?}", pos);
28}
More examples
Hide additional examples
examples/rastrigin.rs (line 32)
23fn main() {
24    // command line args: dimension, number of evaluations
25    let args: Vec<String> = env::args().collect();
26    let dim = args[1].parse::<usize>().unwrap();
27
28    // initial search space for each dimension
29    let initial_min_max = vec![(-5.12, 5.12); dim];
30
31    // initialize differential evolution
32    let mut de = self_adaptive_de(initial_min_max, rastrigin);
33
34    // perform optimization for a maximum of 100000 cost evaluations,
35    // or until best cost is below 0.1.
36    de.iter().take(100000).find(|&cost| cost < 0.1);
37
38    // see what we've found
39    println!("{} evaluations done", de.num_cost_evaluations());
40    
41    let (cost, pos) = de.best().unwrap();
42    println!("{} best cost", cost);
43    println!("{:?} best position", pos);
44}