differential_dataflow/operators/reduce.rs
1//! Applies a reduction function on records grouped by key.
2//!
3//! The `reduce` operator acts on `(key, val)` data.
4//! Records with the same key are grouped together, and a user-supplied reduction function is applied
5//! to the key and the list of values.
6//! The function is expected to populate a list of output values.
7
8use timely::container::PushInto;
9use crate::hashable::Hashable;
10use crate::{Data, ExchangeData, Collection};
11use crate::difference::{Semigroup, Abelian};
12
13use timely::order::PartialOrder;
14use timely::progress::frontier::Antichain;
15use timely::progress::Timestamp;
16use timely::dataflow::*;
17use timely::dataflow::operators::Operator;
18use timely::dataflow::channels::pact::Pipeline;
19use timely::dataflow::operators::Capability;
20
21use crate::operators::arrange::{Arranged, ArrangeByKey, ArrangeBySelf, TraceAgent};
22use crate::lattice::Lattice;
23use crate::trace::{BatchReader, Cursor, Trace, Builder, ExertionLogic, Description};
24use crate::trace::cursor::CursorList;
25use crate::trace::implementations::{KeySpine, KeyBuilder, ValSpine, ValBuilder};
26use crate::trace::implementations::containers::BatchContainer;
27use crate::trace::implementations::merge_batcher::container::MergerChunk;
28use crate::trace::TraceReader;
29
30/// Extension trait for the `reduce` differential dataflow method.
31pub trait Reduce<G: Scope<Timestamp: Lattice+Ord>, K: Data, V: Data, R: Semigroup> {
32 /// Applies a reduction function on records grouped by key.
33 ///
34 /// Input data must be structured as `(key, val)` pairs.
35 /// The user-supplied reduction function takes as arguments
36 ///
37 /// 1. a reference to the key,
38 /// 2. a reference to the slice of values and their accumulated updates,
39 /// 3. a mutuable reference to a vector to populate with output values and accumulated updates.
40 ///
41 /// The user logic is only invoked for non-empty input collections, and it is safe to assume that the
42 /// slice of input values is non-empty. The values are presented in sorted order, as defined by their
43 /// `Ord` implementations.
44 ///
45 /// # Examples
46 ///
47 /// ```
48 /// use differential_dataflow::input::Input;
49 /// use differential_dataflow::operators::Reduce;
50 ///
51 /// ::timely::example(|scope| {
52 /// // report the smallest value for each group
53 /// scope.new_collection_from(1 .. 10).1
54 /// .map(|x| (x / 3, x))
55 /// .reduce(|_key, input, output| {
56 /// output.push((*input[0].0, 1))
57 /// });
58 /// });
59 /// ```
60 fn reduce<L, V2: Data, R2: Ord+Abelian+'static>(&self, logic: L) -> Collection<G, (K, V2), R2>
61 where L: FnMut(&K, &[(&V, R)], &mut Vec<(V2, R2)>)+'static {
62 self.reduce_named("Reduce", logic)
63 }
64
65 /// As `reduce` with the ability to name the operator.
66 fn reduce_named<L, V2: Data, R2: Ord+Abelian+'static>(&self, name: &str, logic: L) -> Collection<G, (K, V2), R2>
67 where L: FnMut(&K, &[(&V, R)], &mut Vec<(V2, R2)>)+'static;
68}
69
70impl<G, K, V, R> Reduce<G, K, V, R> for Collection<G, (K, V), R>
71 where
72 G: Scope<Timestamp: Lattice+Ord>,
73 K: ExchangeData+Hashable,
74 V: ExchangeData,
75 R: ExchangeData+Semigroup,
76 {
77 fn reduce_named<L, V2: Data, R2: Ord+Abelian+'static>(&self, name: &str, logic: L) -> Collection<G, (K, V2), R2>
78 where L: FnMut(&K, &[(&V, R)], &mut Vec<(V2, R2)>)+'static {
79 self.arrange_by_key_named(&format!("Arrange: {}", name))
80 .reduce_named(name, logic)
81 }
82}
83
84impl<G, K: Data, V: Data, T1, R: Ord+Semigroup+'static> Reduce<G, K, V, R> for Arranged<G, T1>
85where
86 G: Scope<Timestamp=T1::Time>,
87 T1: for<'a> TraceReader<Key<'a>=&'a K, KeyOwn = K, Val<'a>=&'a V, Diff=R>+Clone+'static,
88{
89 fn reduce_named<L, V2: Data, R2: Ord+Abelian+'static>(&self, name: &str, logic: L) -> Collection<G, (K, V2), R2>
90 where L: FnMut(&K, &[(&V, R)], &mut Vec<(V2, R2)>)+'static {
91 self.reduce_abelian::<_,ValBuilder<_,_,_,_>,ValSpine<K,V2,_,_>>(name, logic)
92 .as_collection(|k,v| (k.clone(), v.clone()))
93 }
94}
95
96/// Extension trait for the `threshold` and `distinct` differential dataflow methods.
97pub trait Threshold<G: Scope<Timestamp: Lattice+Ord>, K: Data, R1: Semigroup> {
98 /// Transforms the multiplicity of records.
99 ///
100 /// The `threshold` function is obliged to map `R1::zero` to `R2::zero`, or at
101 /// least the computation may behave as if it does. Otherwise, the transformation
102 /// can be nearly arbitrary: the code does not assume any properties of `threshold`.
103 ///
104 /// # Examples
105 ///
106 /// ```
107 /// use differential_dataflow::input::Input;
108 /// use differential_dataflow::operators::Threshold;
109 ///
110 /// ::timely::example(|scope| {
111 /// // report at most one of each key.
112 /// scope.new_collection_from(1 .. 10).1
113 /// .map(|x| x / 3)
114 /// .threshold(|_,c| c % 2);
115 /// });
116 /// ```
117 fn threshold<R2: Ord+Abelian+'static, F: FnMut(&K, &R1)->R2+'static>(&self, thresh: F) -> Collection<G, K, R2> {
118 self.threshold_named("Threshold", thresh)
119 }
120
121 /// A `threshold` with the ability to name the operator.
122 fn threshold_named<R2: Ord+Abelian+'static, F: FnMut(&K, &R1)->R2+'static>(&self, name: &str, thresh: F) -> Collection<G, K, R2>;
123
124 /// Reduces the collection to one occurrence of each distinct element.
125 ///
126 /// # Examples
127 ///
128 /// ```
129 /// use differential_dataflow::input::Input;
130 /// use differential_dataflow::operators::Threshold;
131 ///
132 /// ::timely::example(|scope| {
133 /// // report at most one of each key.
134 /// scope.new_collection_from(1 .. 10).1
135 /// .map(|x| x / 3)
136 /// .distinct();
137 /// });
138 /// ```
139 fn distinct(&self) -> Collection<G, K, isize> {
140 self.distinct_core()
141 }
142
143 /// Distinct for general integer differences.
144 ///
145 /// This method allows `distinct` to produce collections whose difference
146 /// type is something other than an `isize` integer, for example perhaps an
147 /// `i32`.
148 fn distinct_core<R2: Ord+Abelian+'static+From<i8>>(&self) -> Collection<G, K, R2> {
149 self.threshold_named("Distinct", |_,_| R2::from(1i8))
150 }
151}
152
153impl<G: Scope<Timestamp: Lattice+Ord>, K: ExchangeData+Hashable, R1: ExchangeData+Semigroup> Threshold<G, K, R1> for Collection<G, K, R1> {
154 fn threshold_named<R2: Ord+Abelian+'static, F: FnMut(&K,&R1)->R2+'static>(&self, name: &str, thresh: F) -> Collection<G, K, R2> {
155 self.arrange_by_self_named(&format!("Arrange: {}", name))
156 .threshold_named(name, thresh)
157 }
158}
159
160impl<G, K: Data, T1, R1: Semigroup> Threshold<G, K, R1> for Arranged<G, T1>
161where
162 G: Scope<Timestamp=T1::Time>,
163 T1: for<'a> TraceReader<Key<'a>=&'a K, KeyOwn = K, Val<'a>=&'a (), Diff=R1>+Clone+'static,
164{
165 fn threshold_named<R2: Ord+Abelian+'static, F: FnMut(&K,&R1)->R2+'static>(&self, name: &str, mut thresh: F) -> Collection<G, K, R2> {
166 self.reduce_abelian::<_,KeyBuilder<K,G::Timestamp,R2>,KeySpine<K,G::Timestamp,R2>>(name, move |k,s,t| t.push(((), thresh(k, &s[0].1))))
167 .as_collection(|k,_| k.clone())
168 }
169}
170
171/// Extension trait for the `count` differential dataflow method.
172pub trait Count<G: Scope<Timestamp: Lattice+Ord>, K: Data, R: Semigroup> {
173 /// Counts the number of occurrences of each element.
174 ///
175 /// # Examples
176 ///
177 /// ```
178 /// use differential_dataflow::input::Input;
179 /// use differential_dataflow::operators::Count;
180 ///
181 /// ::timely::example(|scope| {
182 /// // report the number of occurrences of each key
183 /// scope.new_collection_from(1 .. 10).1
184 /// .map(|x| x / 3)
185 /// .count();
186 /// });
187 /// ```
188 fn count(&self) -> Collection<G, (K, R), isize> {
189 self.count_core()
190 }
191
192 /// Count for general integer differences.
193 ///
194 /// This method allows `count` to produce collections whose difference
195 /// type is something other than an `isize` integer, for example perhaps an
196 /// `i32`.
197 fn count_core<R2: Ord + Abelian + From<i8> + 'static>(&self) -> Collection<G, (K, R), R2>;
198}
199
200impl<G: Scope<Timestamp: Lattice+Ord>, K: ExchangeData+Hashable, R: ExchangeData+Semigroup> Count<G, K, R> for Collection<G, K, R> {
201 fn count_core<R2: Ord + Abelian + From<i8> + 'static>(&self) -> Collection<G, (K, R), R2> {
202 self.arrange_by_self_named("Arrange: Count")
203 .count_core()
204 }
205}
206
207impl<G, K: Data, T1, R: Data+Semigroup> Count<G, K, R> for Arranged<G, T1>
208where
209 G: Scope<Timestamp=T1::Time>,
210 T1: for<'a> TraceReader<Key<'a>=&'a K, KeyOwn = K, Val<'a>=&'a (), Diff=R>+Clone+'static,
211{
212 fn count_core<R2: Ord + Abelian + From<i8> + 'static>(&self) -> Collection<G, (K, R), R2> {
213 self.reduce_abelian::<_,ValBuilder<K,R,G::Timestamp,R2>,ValSpine<K,R,G::Timestamp,R2>>("Count", |_k,s,t| t.push((s[0].1.clone(), R2::from(1i8))))
214 .as_collection(|k,c| (k.clone(), c.clone()))
215 }
216}
217
218/// Extension trait for the `reduce_core` differential dataflow method.
219pub trait ReduceCore<G: Scope<Timestamp: Lattice+Ord>, K: ToOwned + ?Sized, V: Data, R: Semigroup> {
220 /// Applies `reduce` to arranged data, and returns an arrangement of output data.
221 ///
222 /// This method is used by the more ergonomic `reduce`, `distinct`, and `count` methods, although
223 /// it can be very useful if one needs to manually attach and re-use existing arranged collections.
224 ///
225 /// # Examples
226 ///
227 /// ```
228 /// use differential_dataflow::input::Input;
229 /// use differential_dataflow::operators::reduce::ReduceCore;
230 /// use differential_dataflow::trace::Trace;
231 /// use differential_dataflow::trace::implementations::{ValBuilder, ValSpine};
232 ///
233 /// ::timely::example(|scope| {
234 ///
235 /// let trace =
236 /// scope.new_collection_from(1 .. 10u32).1
237 /// .map(|x| (x, x))
238 /// .reduce_abelian::<_,ValBuilder<_,_,_,_>,ValSpine<_,_,_,_>>(
239 /// "Example",
240 /// move |_key, src, dst| dst.push((*src[0].0, 1))
241 /// )
242 /// .trace;
243 /// });
244 /// ```
245 fn reduce_abelian<L, Bu, T2>(&self, name: &str, mut logic: L) -> Arranged<G, TraceAgent<T2>>
246 where
247 T2: for<'a> Trace<
248 Key<'a>= &'a K,
249 KeyOwn = K,
250 ValOwn = V,
251 Time=G::Timestamp,
252 Diff: Abelian,
253 >+'static,
254 Bu: Builder<Time=T2::Time, Input = Vec<((K::Owned, V), T2::Time, T2::Diff)>, Output = T2::Batch>,
255 L: FnMut(&K, &[(&V, R)], &mut Vec<(V, T2::Diff)>)+'static,
256 {
257 self.reduce_core::<_,Bu,T2>(name, move |key, input, output, change| {
258 if !input.is_empty() {
259 logic(key, input, change);
260 }
261 change.extend(output.drain(..).map(|(x,mut d)| { d.negate(); (x, d) }));
262 crate::consolidation::consolidate(change);
263 })
264 }
265
266 /// Solves for output updates when presented with inputs and would-be outputs.
267 ///
268 /// Unlike `reduce_arranged`, this method may be called with an empty `input`,
269 /// and it may not be safe to index into the first element.
270 /// At least one of the two collections will be non-empty.
271 fn reduce_core<L, Bu, T2>(&self, name: &str, logic: L) -> Arranged<G, TraceAgent<T2>>
272 where
273 T2: for<'a> Trace<
274 Key<'a>=&'a K,
275 KeyOwn = K,
276 ValOwn = V,
277 Time=G::Timestamp,
278 >+'static,
279 Bu: Builder<Time=T2::Time, Input = Vec<((K::Owned, V), T2::Time, T2::Diff)>, Output = T2::Batch>,
280 L: FnMut(&K, &[(&V, R)], &mut Vec<(V,T2::Diff)>, &mut Vec<(V, T2::Diff)>)+'static,
281 ;
282}
283
284impl<G, K, V, R> ReduceCore<G, K, V, R> for Collection<G, (K, V), R>
285where
286 G: Scope,
287 G::Timestamp: Lattice+Ord,
288 K: ExchangeData+Hashable,
289 V: ExchangeData,
290 R: ExchangeData+Semigroup,
291{
292 fn reduce_core<L, Bu, T2>(&self, name: &str, logic: L) -> Arranged<G, TraceAgent<T2>>
293 where
294 V: Data,
295 T2: for<'a> Trace<
296 Key<'a>=&'a K,
297 KeyOwn = K,
298 ValOwn = V,
299 Time=G::Timestamp,
300 >+'static,
301 Bu: Builder<Time=T2::Time, Input = Vec<((K, V), T2::Time, T2::Diff)>, Output = T2::Batch>,
302 L: FnMut(&K, &[(&V, R)], &mut Vec<(V,T2::Diff)>, &mut Vec<(V, T2::Diff)>)+'static,
303 {
304 self.arrange_by_key_named(&format!("Arrange: {}", name))
305 .reduce_core::<_,Bu,_>(name, logic)
306 }
307}
308
309/// A key-wise reduction of values in an input trace.
310///
311/// This method exists to provide reduce functionality without opinions about qualifying trace types.
312pub fn reduce_trace<G, T1, Bu, T2, L>(trace: &Arranged<G, T1>, name: &str, mut logic: L) -> Arranged<G, TraceAgent<T2>>
313where
314 G: Scope<Timestamp=T1::Time>,
315 T1: TraceReader<KeyOwn: Ord> + Clone + 'static,
316 T2: for<'a> Trace<Key<'a>=T1::Key<'a>, KeyOwn=T1::KeyOwn, ValOwn: Data, Time=T1::Time> + 'static,
317 Bu: Builder<Time=T2::Time, Output = T2::Batch, Input: MergerChunk + PushInto<((T1::KeyOwn, T2::ValOwn), T2::Time, T2::Diff)>>,
318 L: FnMut(T1::Key<'_>, &[(T1::Val<'_>, T1::Diff)], &mut Vec<(T2::ValOwn,T2::Diff)>, &mut Vec<(T2::ValOwn, T2::Diff)>)+'static,
319{
320 let mut result_trace = None;
321
322 // fabricate a data-parallel operator using the `unary_notify` pattern.
323 let stream = {
324
325 let result_trace = &mut result_trace;
326 trace.stream.unary_frontier(Pipeline, name, move |_capability, operator_info| {
327
328 // Acquire a logger for arrange events.
329 let logger = trace.stream.scope().logger_for::<crate::logging::DifferentialEventBuilder>("differential/arrange").map(Into::into);
330
331 let activator = Some(trace.stream.scope().activator_for(operator_info.address.clone()));
332 let mut empty = T2::new(operator_info.clone(), logger.clone(), activator);
333 // If there is default exert logic set, install it.
334 if let Some(exert_logic) = trace.stream.scope().config().get::<ExertionLogic>("differential/default_exert_logic").cloned() {
335 empty.set_exert_logic(exert_logic);
336 }
337
338
339 let mut source_trace = trace.trace.clone();
340
341 let (mut output_reader, mut output_writer) = TraceAgent::new(empty, operator_info, logger);
342
343 // let mut output_trace = TraceRc::make_from(agent).0;
344 *result_trace = Some(output_reader.clone());
345
346 // let mut thinker1 = history_replay_prior::HistoryReplayer::<V, V2, G::Timestamp, R, R2>::new();
347 // let mut thinker = history_replay::HistoryReplayer::<V, V2, G::Timestamp, R, R2>::new();
348 let mut new_interesting_times = Vec::<G::Timestamp>::new();
349
350 // Our implementation maintains a list of outstanding `(key, time)` synthetic interesting times,
351 // as well as capabilities for these times (or their lower envelope, at least).
352 let mut interesting = Vec::<(T1::KeyOwn, G::Timestamp)>::new();
353 let mut capabilities = Vec::<Capability<G::Timestamp>>::new();
354
355 // buffers and logic for computing per-key interesting times "efficiently".
356 let mut interesting_times = Vec::<G::Timestamp>::new();
357
358 // Upper and lower frontiers for the pending input and output batches to process.
359 let mut upper_limit = Antichain::from_elem(<G::Timestamp as timely::progress::Timestamp>::minimum());
360 let mut lower_limit = Antichain::from_elem(<G::Timestamp as timely::progress::Timestamp>::minimum());
361
362 // Output batches may need to be built piecemeal, and these temp storage help there.
363 let mut output_upper = Antichain::from_elem(<G::Timestamp as timely::progress::Timestamp>::minimum());
364 let mut output_lower = Antichain::from_elem(<G::Timestamp as timely::progress::Timestamp>::minimum());
365
366 let id = trace.stream.scope().index();
367
368 move |input, output| {
369
370 // The `reduce` operator receives fully formed batches, which each serve as an indication
371 // that the frontier has advanced to the upper bound of their description.
372 //
373 // Although we could act on each individually, several may have been sent, and it makes
374 // sense to accumulate them first to coordinate their re-evaluation. We will need to pay
375 // attention to which times need to be collected under which capability, so that we can
376 // assemble output batches correctly. We will maintain several builders concurrently, and
377 // place output updates into the appropriate builder.
378 //
379 // It turns out we must use notificators, as we cannot await empty batches from arrange to
380 // indicate progress, as the arrange may not hold the capability to send such. Instead, we
381 // must watch for progress here (and the upper bound of received batches) to tell us how
382 // far we can process work.
383 //
384 // We really want to retire all batches we receive, so we want a frontier which reflects
385 // both information from batches as well as progress information. I think this means that
386 // we keep times that are greater than or equal to a time in the other frontier, deduplicated.
387
388 let mut batch_cursors = Vec::new();
389 let mut batch_storage = Vec::new();
390
391 // Downgrade previous upper limit to be current lower limit.
392 lower_limit.clear();
393 lower_limit.extend(upper_limit.borrow().iter().cloned());
394
395 // Drain the input stream of batches, validating the contiguity of the batch descriptions and
396 // capturing a cursor for each of the batches as well as ensuring we hold a capability for the
397 // times in the batch.
398 input.for_each(|capability, batches| {
399
400 for batch in batches.drain(..) {
401 upper_limit.clone_from(batch.upper());
402 batch_cursors.push(batch.cursor());
403 batch_storage.push(batch);
404 }
405
406 // Ensure that `capabilities` covers the capability of the batch.
407 capabilities.retain(|cap| !capability.time().less_than(cap.time()));
408 if !capabilities.iter().any(|cap| cap.time().less_equal(capability.time())) {
409 capabilities.push(capability.retain());
410 }
411 });
412
413 // Pull in any subsequent empty batches we believe to exist.
414 source_trace.advance_upper(&mut upper_limit);
415
416 // Only if our upper limit has advanced should we do work.
417 if upper_limit != lower_limit {
418
419 // If we have no capabilities, then we (i) should not produce any outputs and (ii) could not send
420 // any produced outputs even if they were (incorrectly) produced. We cannot even send empty batches
421 // to indicate forward progress, and must hope that downstream operators look at progress frontiers
422 // as well as batch descriptions.
423 //
424 // We can (and should) advance source and output traces if `upper_limit` indicates this is possible.
425 if capabilities.iter().any(|c| !upper_limit.less_equal(c.time())) {
426
427 // `interesting` contains "warnings" about keys and times that may need to be re-considered.
428 // We first extract those times from this list that lie in the interval we will process.
429 sort_dedup(&mut interesting);
430 // `exposed` contains interesting (key, time)s now below `upper_limit`
431 let mut exposed_keys = T1::KeyContainer::with_capacity(0);
432 let mut exposed_time = T1::TimeContainer::with_capacity(0);
433 // Keep pairs greater or equal to `upper_limit`, and "expose" other pairs.
434 interesting.retain(|(key, time)| {
435 if upper_limit.less_equal(time) { true } else {
436 exposed_keys.push_own(key);
437 exposed_time.push_own(time);
438 false
439 }
440 });
441
442 // Prepare an output buffer and builder for each capability.
443 //
444 // We buffer and build separately, as outputs are produced grouped by time, whereas the
445 // builder wants to see outputs grouped by value. While the per-key computation could
446 // do the re-sorting itself, buffering per-key outputs lets us double check the results
447 // against other implementations for accuracy.
448 //
449 // TODO: It would be better if all updates went into one batch, but timely dataflow prevents
450 // this as long as it requires that there is only one capability for each message.
451 let mut buffers = Vec::<(G::Timestamp, Vec<(T2::ValOwn, G::Timestamp, T2::Diff)>)>::new();
452 let mut builders = Vec::new();
453 for cap in capabilities.iter() {
454 buffers.push((cap.time().clone(), Vec::new()));
455 builders.push(Bu::new());
456 }
457
458 let mut buffer = Bu::Input::default();
459
460 // cursors for navigating input and output traces.
461 let (mut source_cursor, source_storage): (T1::Cursor, _) = source_trace.cursor_through(lower_limit.borrow()).expect("failed to acquire source cursor");
462 let source_storage = &source_storage;
463 let (mut output_cursor, output_storage): (T2::Cursor, _) = output_reader.cursor_through(lower_limit.borrow()).expect("failed to acquire output cursor");
464 let output_storage = &output_storage;
465 let (mut batch_cursor, batch_storage) = (CursorList::new(batch_cursors, &batch_storage), batch_storage);
466 let batch_storage = &batch_storage;
467
468 let mut thinker = history_replay::HistoryReplayer::new();
469
470 // We now march through the keys we must work on, drawing from `batch_cursors` and `exposed`.
471 //
472 // We only keep valid cursors (those with more data) in `batch_cursors`, and so its length
473 // indicates whether more data remain. We move through `exposed` using (index) `exposed_position`.
474 // There could perhaps be a less provocative variable name.
475 let mut exposed_position = 0;
476 while batch_cursor.key_valid(batch_storage) || exposed_position < exposed_keys.len() {
477
478 // Determine the next key we will work on; could be synthetic, could be from a batch.
479 let key1 = exposed_keys.get(exposed_position);
480 let key2 = batch_cursor.get_key(batch_storage);
481 let key = match (key1, key2) {
482 (Some(key1), Some(key2)) => ::std::cmp::min(key1, key2),
483 (Some(key1), None) => key1,
484 (None, Some(key2)) => key2,
485 (None, None) => unreachable!(),
486 };
487
488 // `interesting_times` contains those times between `lower_issued` and `upper_limit`
489 // that we need to re-consider. We now populate it, but perhaps this should be left
490 // to the per-key computation, which may be able to avoid examining the times of some
491 // values (for example, in the case of min/max/topk).
492 interesting_times.clear();
493
494 // Populate `interesting_times` with synthetic interesting times (below `upper_limit`) for this key.
495 while exposed_keys.get(exposed_position) == Some(key) {
496 interesting_times.push(T1::owned_time(exposed_time.index(exposed_position)));
497 exposed_position += 1;
498 }
499
500 // tidy up times, removing redundancy.
501 sort_dedup(&mut interesting_times);
502
503 // do the per-key computation.
504 let _counters = thinker.compute(
505 key,
506 (&mut source_cursor, source_storage),
507 (&mut output_cursor, output_storage),
508 (&mut batch_cursor, batch_storage),
509 &mut interesting_times,
510 &mut logic,
511 &upper_limit,
512 &mut buffers[..],
513 &mut new_interesting_times,
514 );
515
516 if batch_cursor.get_key(batch_storage) == Some(key) {
517 batch_cursor.step_key(batch_storage);
518 }
519
520 // Record future warnings about interesting times (and assert they should be "future").
521 for time in new_interesting_times.drain(..) {
522 debug_assert!(upper_limit.less_equal(&time));
523 interesting.push((T1::owned_key(key), time));
524 }
525
526 // Sort each buffer by value and move into the corresponding builder.
527 // TODO: This makes assumptions about at least one of (i) the stability of `sort_by`,
528 // (ii) that the buffers are time-ordered, and (iii) that the builders accept
529 // arbitrarily ordered times.
530 for index in 0 .. buffers.len() {
531 buffers[index].1.sort_by(|x,y| x.0.cmp(&y.0));
532 for (val, time, diff) in buffers[index].1.drain(..) {
533 buffer.push_into(((T1::owned_key(key), val), time, diff));
534 builders[index].push(&mut buffer);
535 buffer.clear();
536 }
537 }
538 }
539
540 // We start sealing output batches from the lower limit (previous upper limit).
541 // In principle, we could update `lower_limit` itself, and it should arrive at
542 // `upper_limit` by the end of the process.
543 output_lower.clear();
544 output_lower.extend(lower_limit.borrow().iter().cloned());
545
546 // build and ship each batch (because only one capability per message).
547 for (index, builder) in builders.drain(..).enumerate() {
548
549 // Form the upper limit of the next batch, which includes all times greater
550 // than the input batch, or the capabilities from i + 1 onward.
551 output_upper.clear();
552 output_upper.extend(upper_limit.borrow().iter().cloned());
553 for capability in &capabilities[index + 1 ..] {
554 output_upper.insert(capability.time().clone());
555 }
556
557 if output_upper.borrow() != output_lower.borrow() {
558
559 let description = Description::new(output_lower.clone(), output_upper.clone(), Antichain::from_elem(G::Timestamp::minimum()));
560 let batch = builder.done(description);
561
562 // ship batch to the output, and commit to the output trace.
563 output.session(&capabilities[index]).give(batch.clone());
564 output_writer.insert(batch, Some(capabilities[index].time().clone()));
565
566 output_lower.clear();
567 output_lower.extend(output_upper.borrow().iter().cloned());
568 }
569 }
570
571 // This should be true, as the final iteration introduces no capabilities, and
572 // uses exactly `upper_limit` to determine the upper bound. Good to check though.
573 assert!(output_upper.borrow() == upper_limit.borrow());
574
575 // Determine the frontier of our interesting times.
576 let mut frontier = Antichain::<G::Timestamp>::new();
577 for (_, time) in &interesting {
578 frontier.insert_ref(time);
579 }
580
581 // Update `capabilities` to reflect interesting pairs described by `frontier`.
582 let mut new_capabilities = Vec::new();
583 for time in frontier.borrow().iter() {
584 if let Some(cap) = capabilities.iter().find(|c| c.time().less_equal(time)) {
585 new_capabilities.push(cap.delayed(time));
586 }
587 else {
588 println!("{}:\tfailed to find capability less than new frontier time:", id);
589 println!("{}:\t time: {:?}", id, time);
590 println!("{}:\t caps: {:?}", id, capabilities);
591 println!("{}:\t uppr: {:?}", id, upper_limit);
592 }
593 }
594 capabilities = new_capabilities;
595
596 // ensure that observed progress is reflected in the output.
597 output_writer.seal(upper_limit.clone());
598 }
599 else {
600 output_writer.seal(upper_limit.clone());
601 }
602
603 // We only anticipate future times in advance of `upper_limit`.
604 source_trace.set_logical_compaction(upper_limit.borrow());
605 output_reader.set_logical_compaction(upper_limit.borrow());
606
607 // We will only slice the data between future batches.
608 source_trace.set_physical_compaction(upper_limit.borrow());
609 output_reader.set_physical_compaction(upper_limit.borrow());
610 }
611
612 // Exert trace maintenance if we have been so requested.
613 output_writer.exert();
614 }
615 }
616 )
617 };
618
619 Arranged { stream, trace: result_trace.unwrap() }
620}
621
622
623#[inline(never)]
624fn sort_dedup<T: Ord>(list: &mut Vec<T>) {
625 list.dedup();
626 list.sort();
627 list.dedup();
628}
629
630trait PerKeyCompute<'a, C1, C2, C3, V>
631where
632 C1: Cursor,
633 C2: for<'b> Cursor<Key<'a> = C1::Key<'a>, ValOwn = V, Time = C1::Time>,
634 C3: Cursor<Key<'a> = C1::Key<'a>, Val<'a> = C1::Val<'a>, Time = C1::Time, Diff = C1::Diff>,
635 V: Clone + Ord,
636{
637 fn new() -> Self;
638 fn compute<L>(
639 &mut self,
640 key: C1::Key<'a>,
641 source_cursor: (&mut C1, &'a C1::Storage),
642 output_cursor: (&mut C2, &'a C2::Storage),
643 batch_cursor: (&mut C3, &'a C3::Storage),
644 times: &mut Vec<C1::Time>,
645 logic: &mut L,
646 upper_limit: &Antichain<C1::Time>,
647 outputs: &mut [(C2::Time, Vec<(V, C2::Time, C2::Diff)>)],
648 new_interesting: &mut Vec<C1::Time>) -> (usize, usize)
649 where
650 L: FnMut(
651 C1::Key<'a>,
652 &[(C1::Val<'a>, C1::Diff)],
653 &mut Vec<(V, C2::Diff)>,
654 &mut Vec<(V, C2::Diff)>,
655 );
656}
657
658
659/// Implementation based on replaying historical and new updates together.
660mod history_replay {
661
662 use timely::progress::Antichain;
663 use timely::PartialOrder;
664
665 use crate::lattice::Lattice;
666 use crate::trace::Cursor;
667 use crate::operators::ValueHistory;
668
669 use super::{PerKeyCompute, sort_dedup};
670
671 /// The `HistoryReplayer` is a compute strategy based on moving through existing inputs, interesting times, etc in
672 /// time order, maintaining consolidated representations of updates with respect to future interesting times.
673 pub struct HistoryReplayer<'a, C1, C2, C3, V>
674 where
675 C1: Cursor,
676 C2: Cursor<Key<'a> = C1::Key<'a>, Time = C1::Time>,
677 C3: Cursor<Key<'a> = C1::Key<'a>, Val<'a> = C1::Val<'a>, Time = C1::Time, Diff = C1::Diff>,
678 V: Clone + Ord,
679 {
680 input_history: ValueHistory<'a, C1>,
681 output_history: ValueHistory<'a, C2>,
682 batch_history: ValueHistory<'a, C3>,
683 input_buffer: Vec<(C1::Val<'a>, C1::Diff)>,
684 output_buffer: Vec<(V, C2::Diff)>,
685 update_buffer: Vec<(V, C2::Diff)>,
686 output_produced: Vec<((V, C2::Time), C2::Diff)>,
687 synth_times: Vec<C1::Time>,
688 meets: Vec<C1::Time>,
689 times_current: Vec<C1::Time>,
690 temporary: Vec<C1::Time>,
691 }
692
693 impl<'a, C1, C2, C3, V> PerKeyCompute<'a, C1, C2, C3, V> for HistoryReplayer<'a, C1, C2, C3, V>
694 where
695 C1: Cursor,
696 C2: for<'b> Cursor<Key<'a> = C1::Key<'a>, ValOwn = V, Time = C1::Time>,
697 C3: Cursor<Key<'a> = C1::Key<'a>, Val<'a> = C1::Val<'a>, Time = C1::Time, Diff = C1::Diff>,
698 V: Clone + Ord,
699 {
700 fn new() -> Self {
701 HistoryReplayer {
702 input_history: ValueHistory::new(),
703 output_history: ValueHistory::new(),
704 batch_history: ValueHistory::new(),
705 input_buffer: Vec::new(),
706 output_buffer: Vec::new(),
707 update_buffer: Vec::new(),
708 output_produced: Vec::new(),
709 synth_times: Vec::new(),
710 meets: Vec::new(),
711 times_current: Vec::new(),
712 temporary: Vec::new(),
713 }
714 }
715 #[inline(never)]
716 fn compute<L>(
717 &mut self,
718 key: C1::Key<'a>,
719 (source_cursor, source_storage): (&mut C1, &'a C1::Storage),
720 (output_cursor, output_storage): (&mut C2, &'a C2::Storage),
721 (batch_cursor, batch_storage): (&mut C3, &'a C3::Storage),
722 times: &mut Vec<C1::Time>,
723 logic: &mut L,
724 upper_limit: &Antichain<C1::Time>,
725 outputs: &mut [(C2::Time, Vec<(V, C2::Time, C2::Diff)>)],
726 new_interesting: &mut Vec<C1::Time>) -> (usize, usize)
727 where
728 L: FnMut(
729 C1::Key<'a>,
730 &[(C1::Val<'a>, C1::Diff)],
731 &mut Vec<(V, C2::Diff)>,
732 &mut Vec<(V, C2::Diff)>,
733 )
734 {
735
736 // The work we need to perform is at times defined principally by the contents of `batch_cursor`
737 // and `times`, respectively "new work we just received" and "old times we were warned about".
738 //
739 // Our first step is to identify these times, so that we can use them to restrict the amount of
740 // information we need to recover from `input` and `output`; as all times of interest will have
741 // some time from `batch_cursor` or `times`, we can compute their meet and advance all other
742 // loaded times by performing the lattice `join` with this value.
743
744 // Load the batch contents.
745 let mut batch_replay = self.batch_history.replay_key(batch_cursor, batch_storage, key, |time| C3::owned_time(time));
746
747 // We determine the meet of times we must reconsider (those from `batch` and `times`). This meet
748 // can be used to advance other historical times, which may consolidate their representation. As
749 // a first step, we determine the meets of each *suffix* of `times`, which we will use as we play
750 // history forward.
751
752 self.meets.clear();
753 self.meets.extend(times.iter().cloned());
754 for index in (1 .. self.meets.len()).rev() {
755 self.meets[index-1] = self.meets[index-1].meet(&self.meets[index]);
756 }
757
758 // Determine the meet of times in `batch` and `times`.
759 let mut meet = None;
760 update_meet(&mut meet, self.meets.get(0));
761 update_meet(&mut meet, batch_replay.meet());
762 // if let Some(time) = self.meets.get(0) {
763 // meet = match meet {
764 // None => Some(self.meets[0].clone()),
765 // Some(x) => Some(x.meet(&self.meets[0])),
766 // };
767 // }
768 // if let Some(time) = batch_replay.meet() {
769 // meet = match meet {
770 // None => Some(time.clone()),
771 // Some(x) => Some(x.meet(&time)),
772 // };
773 // }
774
775 // Having determined the meet, we can load the input and output histories, where we
776 // advance all times by joining them with `meet`. The resulting times are more compact
777 // and guaranteed to accumulate identically for times greater or equal to `meet`.
778
779 // Load the input and output histories.
780 let mut input_replay = if let Some(meet) = meet.as_ref() {
781 self.input_history.replay_key(source_cursor, source_storage, key, |time| {
782 let mut time = C1::owned_time(time);
783 time.join_assign(meet);
784 time
785 })
786 }
787 else {
788 self.input_history.replay_key(source_cursor, source_storage, key, |time| C1::owned_time(time))
789 };
790 let mut output_replay = if let Some(meet) = meet.as_ref() {
791 self.output_history.replay_key(output_cursor, output_storage, key, |time| {
792 let mut time = C2::owned_time(time);
793 time.join_assign(meet);
794 time
795 })
796 }
797 else {
798 self.output_history.replay_key(output_cursor, output_storage, key, |time| C2::owned_time(time))
799 };
800
801 self.synth_times.clear();
802 self.times_current.clear();
803 self.output_produced.clear();
804
805 // The frontier of times we may still consider.
806 // Derived from frontiers of our update histories, supplied times, and synthetic times.
807
808 let mut times_slice = ×[..];
809 let mut meets_slice = &self.meets[..];
810
811 let mut compute_counter = 0;
812 let mut output_counter = 0;
813
814 // We have candidate times from `batch` and `times`, as well as times identified by either
815 // `input` or `output`. Finally, we may have synthetic times produced as the join of times
816 // we consider in the course of evaluation. As long as any of these times exist, we need to
817 // keep examining times.
818 while let Some(next_time) = [ batch_replay.time(),
819 times_slice.first(),
820 input_replay.time(),
821 output_replay.time(),
822 self.synth_times.last(),
823 ].iter().cloned().flatten().min().cloned() {
824
825 // Advance input and output history replayers. This marks applicable updates as active.
826 input_replay.step_while_time_is(&next_time);
827 output_replay.step_while_time_is(&next_time);
828
829 // One of our goals is to determine if `next_time` is "interesting", meaning whether we
830 // have any evidence that we should re-evaluate the user logic at this time. For a time
831 // to be "interesting" it would need to be the join of times that include either a time
832 // from `batch`, `times`, or `synth`. Neither `input` nor `output` times are sufficient.
833
834 // Advance batch history, and capture whether an update exists at `next_time`.
835 let mut interesting = batch_replay.step_while_time_is(&next_time);
836 if interesting {
837 if let Some(meet) = meet.as_ref() {
838 batch_replay.advance_buffer_by(meet);
839 }
840 }
841
842 // advance both `synth_times` and `times_slice`, marking this time interesting if in either.
843 while self.synth_times.last() == Some(&next_time) {
844 // We don't know enough about `next_time` to avoid putting it in to `times_current`.
845 // TODO: If we knew that the time derived from a canceled batch update, we could remove the time.
846 self.times_current.push(self.synth_times.pop().expect("failed to pop from synth_times")); // <-- TODO: this could be a min-heap.
847 interesting = true;
848 }
849 while times_slice.first() == Some(&next_time) {
850 // We know nothing about why we were warned about `next_time`, and must include it to scare future times.
851 self.times_current.push(times_slice[0].clone());
852 times_slice = ×_slice[1..];
853 meets_slice = &meets_slice[1..];
854 interesting = true;
855 }
856
857 // Times could also be interesting if an interesting time is less than them, as they would join
858 // and become the time itself. They may not equal the current time because whatever frontier we
859 // are tracking may not have advanced far enough.
860 // TODO: `batch_history` may or may not be super compact at this point, and so this check might
861 // yield false positives if not sufficiently compact. Maybe we should into this and see.
862 interesting = interesting || batch_replay.buffer().iter().any(|&((_, ref t),_)| t.less_equal(&next_time));
863 interesting = interesting || self.times_current.iter().any(|t| t.less_equal(&next_time));
864
865 // We should only process times that are not in advance of `upper_limit`.
866 //
867 // We have no particular guarantee that known times will not be in advance of `upper_limit`.
868 // We may have the guarantee that synthetic times will not be, as we test against the limit
869 // before we add the time to `synth_times`.
870 if !upper_limit.less_equal(&next_time) {
871
872 // We should re-evaluate the computation if this is an interesting time.
873 // If the time is uninteresting (and our logic is sound) it is not possible for there to be
874 // output produced. This sounds like a good test to have for debug builds!
875 if interesting {
876
877 compute_counter += 1;
878
879 // Assemble the input collection at `next_time`. (`self.input_buffer` cleared just after use).
880 debug_assert!(self.input_buffer.is_empty());
881 meet.as_ref().map(|meet| input_replay.advance_buffer_by(meet));
882 for &((value, ref time), ref diff) in input_replay.buffer().iter() {
883 if time.less_equal(&next_time) {
884 self.input_buffer.push((value, diff.clone()));
885 }
886 else {
887 self.temporary.push(next_time.join(time));
888 }
889 }
890 for &((value, ref time), ref diff) in batch_replay.buffer().iter() {
891 if time.less_equal(&next_time) {
892 self.input_buffer.push((value, diff.clone()));
893 }
894 else {
895 self.temporary.push(next_time.join(time));
896 }
897 }
898 crate::consolidation::consolidate(&mut self.input_buffer);
899
900 meet.as_ref().map(|meet| output_replay.advance_buffer_by(meet));
901 for &((value, ref time), ref diff) in output_replay.buffer().iter() {
902 if time.less_equal(&next_time) {
903 self.output_buffer.push((C2::owned_val(value), diff.clone()));
904 }
905 else {
906 self.temporary.push(next_time.join(time));
907 }
908 }
909 for &((ref value, ref time), ref diff) in self.output_produced.iter() {
910 if time.less_equal(&next_time) {
911 self.output_buffer.push(((*value).to_owned(), diff.clone()));
912 }
913 else {
914 self.temporary.push(next_time.join(time));
915 }
916 }
917 crate::consolidation::consolidate(&mut self.output_buffer);
918
919 // Apply user logic if non-empty input and see what happens!
920 if !self.input_buffer.is_empty() || !self.output_buffer.is_empty() {
921 logic(key, &self.input_buffer[..], &mut self.output_buffer, &mut self.update_buffer);
922 self.input_buffer.clear();
923 self.output_buffer.clear();
924 }
925
926 // output_replay.advance_buffer_by(&meet);
927 // for &((ref value, ref time), diff) in output_replay.buffer().iter() {
928 // if time.less_equal(&next_time) {
929 // self.output_buffer.push(((*value).clone(), -diff));
930 // }
931 // else {
932 // self.temporary.push(next_time.join(time));
933 // }
934 // }
935 // for &((ref value, ref time), diff) in self.output_produced.iter() {
936 // if time.less_equal(&next_time) {
937 // self.output_buffer.push(((*value).clone(), -diff));
938 // }
939 // else {
940 // self.temporary.push(next_time.join(&time));
941 // }
942 // }
943
944 // Having subtracted output updates from user output, consolidate the results to determine
945 // if there is anything worth reporting. Note: this also orders the results by value, so
946 // that could make the above merging plan even easier.
947 crate::consolidation::consolidate(&mut self.update_buffer);
948
949 // Stash produced updates into both capability-indexed buffers and `output_produced`.
950 // The two locations are important, in that we will compact `output_produced` as we move
951 // through times, but we cannot compact the output buffers because we need their actual
952 // times.
953 if !self.update_buffer.is_empty() {
954
955 output_counter += 1;
956
957 // We *should* be able to find a capability for `next_time`. Any thing else would
958 // indicate a logical error somewhere along the way; either we release a capability
959 // we should have kept, or we have computed the output incorrectly (or both!)
960 let idx = outputs.iter().rev().position(|(time, _)| time.less_equal(&next_time));
961 let idx = outputs.len() - idx.expect("failed to find index") - 1;
962 for (val, diff) in self.update_buffer.drain(..) {
963 self.output_produced.push(((val.clone(), next_time.clone()), diff.clone()));
964 outputs[idx].1.push((val, next_time.clone(), diff));
965 }
966
967 // Advance times in `self.output_produced` and consolidate the representation.
968 // NOTE: We only do this when we add records; it could be that there are situations
969 // where we want to consolidate even without changes (because an initially
970 // large collection can now be collapsed).
971 if let Some(meet) = meet.as_ref() {
972 for entry in &mut self.output_produced {
973 (entry.0).1 = (entry.0).1.join(meet);
974 }
975 }
976 crate::consolidation::consolidate(&mut self.output_produced);
977 }
978 }
979
980 // Determine synthetic interesting times.
981 //
982 // Synthetic interesting times are produced differently for interesting and uninteresting
983 // times. An uninteresting time must join with an interesting time to become interesting,
984 // which means joins with `self.batch_history` and `self.times_current`. I think we can
985 // skip `self.synth_times` as we haven't gotten to them yet, but we will and they will be
986 // joined against everything.
987
988 // Any time, even uninteresting times, must be joined with the current accumulation of
989 // batch times as well as the current accumulation of `times_current`.
990 for &((_, ref time), _) in batch_replay.buffer().iter() {
991 if !time.less_equal(&next_time) {
992 self.temporary.push(time.join(&next_time));
993 }
994 }
995 for time in self.times_current.iter() {
996 if !time.less_equal(&next_time) {
997 self.temporary.push(time.join(&next_time));
998 }
999 }
1000
1001 sort_dedup(&mut self.temporary);
1002
1003 // Introduce synthetic times, and re-organize if we add any.
1004 let synth_len = self.synth_times.len();
1005 for time in self.temporary.drain(..) {
1006 // We can either service `join` now, or must delay for the future.
1007 if upper_limit.less_equal(&time) {
1008 debug_assert!(outputs.iter().any(|(t,_)| t.less_equal(&time)));
1009 new_interesting.push(time);
1010 }
1011 else {
1012 self.synth_times.push(time);
1013 }
1014 }
1015 if self.synth_times.len() > synth_len {
1016 self.synth_times.sort_by(|x,y| y.cmp(x));
1017 self.synth_times.dedup();
1018 }
1019 }
1020 else if interesting {
1021 // We cannot process `next_time` now, and must delay it.
1022 //
1023 // I think we are probably only here because of an uninteresting time declared interesting,
1024 // as initial interesting times are filtered to be in interval, and synthetic times are also
1025 // filtered before introducing them to `self.synth_times`.
1026 new_interesting.push(next_time.clone());
1027 debug_assert!(outputs.iter().any(|(t,_)| t.less_equal(&next_time)))
1028 }
1029
1030
1031 // Update `meet` to track the meet of each source of times.
1032 meet = None;//T::maximum();
1033 update_meet(&mut meet, batch_replay.meet());
1034 update_meet(&mut meet, input_replay.meet());
1035 update_meet(&mut meet, output_replay.meet());
1036 for time in self.synth_times.iter() { update_meet(&mut meet, Some(time)); }
1037 // if let Some(time) = batch_replay.meet() { meet = meet.meet(time); }
1038 // if let Some(time) = input_replay.meet() { meet = meet.meet(time); }
1039 // if let Some(time) = output_replay.meet() { meet = meet.meet(time); }
1040 // for time in self.synth_times.iter() { meet = meet.meet(time); }
1041 update_meet(&mut meet, meets_slice.first());
1042 // if let Some(time) = meets_slice.first() { meet = meet.meet(time); }
1043
1044 // Update `times_current` by the frontier.
1045 if let Some(meet) = meet.as_ref() {
1046 for time in self.times_current.iter_mut() {
1047 *time = time.join(meet);
1048 }
1049 }
1050
1051 sort_dedup(&mut self.times_current);
1052 }
1053
1054 // Normalize the representation of `new_interesting`, deduplicating and ordering.
1055 sort_dedup(new_interesting);
1056
1057 (compute_counter, output_counter)
1058 }
1059 }
1060
1061 /// Updates an optional meet by an optional time.
1062 fn update_meet<T: Lattice+Clone>(meet: &mut Option<T>, other: Option<&T>) {
1063 if let Some(time) = other {
1064 if let Some(meet) = meet.as_mut() {
1065 *meet = meet.meet(time);
1066 }
1067 if meet.is_none() {
1068 *meet = Some(time.clone());
1069 }
1070 }
1071 }
1072}