differential_dataflow/algorithms/graphs/
sequential.rs

1//! Sequential (non-concurrent) graph algorithms.
2
3use std::hash::Hash;
4
5use timely::dataflow::*;
6
7use crate::{Collection, ExchangeData};
8use crate::lattice::Lattice;
9use crate::operators::*;
10use crate::hashable::Hashable;
11
12fn _color<G, N>(edges: &Collection<G, (N,N)>) -> Collection<G,(N,Option<u32>)>
13where
14    G: Scope<Timestamp: Lattice+Ord>,
15    N: ExchangeData+Hash,
16{
17    // need some bogus initial values.
18    let start = edges.map(|(x,_y)| (x,u32::max_value()))
19                     .distinct();
20
21    // repeatedly apply color-picking logic.
22    sequence(&start, edges, |_node, vals| {
23
24        // look for the first absent positive integer.
25        // start at 1 in case we ever use NonZero<u32>.
26
27        (1u32 ..)
28            .find(|&i| vals.get(i as usize - 1).map(|x| *x.0) != Some(i))
29            .unwrap()
30    })
31}
32
33/// Applies `logic` to nodes sequentially, in order of node identifiers.
34///
35/// The `logic` function updates a node's state as a function of its
36/// neighbor states. It will only be called on complete input.
37///
38/// Internally, this method performs a fixed-point computation in which
39/// a node "fires" once all of its neighbors with lower identifier have
40/// fired, and we apply `logic` to the new state of lower neighbors and
41/// the old state (input) of higher neighbors.
42pub fn sequence<G, N, V, F>(
43    state: &Collection<G, (N,V)>,
44    edges: &Collection<G, (N,N)>,
45    logic: F) -> Collection<G, (N,Option<V>)>
46where
47    G: Scope<Timestamp: Lattice+Hash+Ord>,
48    N: ExchangeData+Hashable,
49    V: ExchangeData,
50    F: Fn(&N, &[(&V, isize)])->V+'static
51{
52
53    // start iteration with None messages for all.
54    state
55        .map(|(node, _state)| (node, None))
56        .iterate(|new_state| {
57            // immutable content: edges and initial state.
58            let edges = edges.enter(&new_state.scope());
59            let old_state = state.enter(&new_state.scope());
60                                 // .map(|x| (x.0, Some(x.1)));
61
62            // break edges into forward and reverse directions.
63            let forward = edges.filter(|edge| edge.0 < edge.1);
64            let reverse = edges.filter(|edge| edge.0 > edge.1);
65
66            // new state goes along forward edges, old state along reverse edges
67            let new_messages = new_state.join_map(&forward, |_k,v,d| (d.clone(),v.clone()));
68
69            let incomplete = new_messages.filter(|x| x.1.is_none()).map(|x| x.0).distinct();
70            let new_messages = new_messages.filter(|x| x.1.is_some()).map(|x| (x.0, x.1.unwrap()));
71
72            let old_messages = old_state.join_map(&reverse, |_k,v,d| (d.clone(),v.clone()));
73
74            let messages = new_messages.concat(&old_messages).antijoin(&incomplete);
75
76            // // determine who has incoming `None` messages, and suppress all of them.
77            // let incomplete = new_messages.filter(|x| x.1.is_none()).map(|x| x.0).distinct();
78
79            // merge messages; suppress computation if not all inputs available yet.
80            messages
81                // .concat(&old_messages)  // /-- possibly too clever: None if any inputs None.
82                // .antijoin(&incomplete)
83                .reduce(move |k, vs, t| t.push((Some(logic(k,vs)),1)))
84                .concat(&incomplete.map(|x| (x, None)))
85        })
86}