1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
//! Group records by a key, and apply a reduction function.
//!
//! The `group` operators act on data that can be viewed as pairs `(key, val)`. They group records
//! with the same key, and apply user supplied functions to the key and a list of values, which are
//! expected to populate a list of output values.
//!
//! Several variants of `group` exist which allow more precise control over how grouping is done.
//! For example, the `_by` suffixed variants take arbitrary data, but require a key-value selector
//! to be applied to each record. The `_u` suffixed variants use unsigned integers as keys, and
//! will use a dense array rather than a `HashMap` to store their keys.
//!
//! The list of values are presented as an iterator which internally merges sorted lists of values.
//! This ordering can be exploited in several cases to avoid computation when only the first few
//! elements are required.

use std::default::Default;

use timely::order::TotalOrder;
use timely::dataflow::*;
use timely::dataflow::operators::Unary;
use timely::dataflow::channels::pact::Pipeline;
use timely_sort::Unsigned;

use lattice::Lattice;
use ::{Data, Collection, Diff};
use hashable::{Hashable, UnsignedWrapper};
use collection::AsCollection;
use operators::arrange::{Arrange, Arranged, ArrangeBySelf};
use trace::{BatchReader, Cursor, Trace, TraceReader};
use trace::implementations::ord::OrdKeySpine as DefaultKeyTrace;

/// Extension trait for the `count` differential dataflow method.
pub trait CountTotal<G: Scope, K: Data, R: Diff> where G::Timestamp: TotalOrder+Lattice+Ord {
    /// Counts the number of occurrences of each element.
    ///
    /// # Examples
    ///
    /// ```
    /// extern crate timely;
    /// extern crate differential_dataflow;
    ///
    /// use differential_dataflow::input::Input;
    /// use differential_dataflow::operators::CountTotal;
    ///
    /// fn main() {
    ///     ::timely::example(|scope| {
    ///         // report the number of occurrences of each key
    ///         scope.new_collection_from(1 .. 10).1
    ///              .map(|x| x / 3)
    ///              .count_total();
    ///     });
    /// }
    /// ```
    fn count_total(&self) -> Collection<G, (K, R), isize>;
    /// Counts the number of occurrences of each element.
    /// 
    /// This method is a specialization for when the key is an unsigned integer fit for distributing the data.
    ///
    /// # Examples
    ///
    /// ```
    /// extern crate timely;
    /// extern crate differential_dataflow;
    ///
    /// use differential_dataflow::input::Input;
    /// use differential_dataflow::operators::CountTotal;
    ///
    /// fn main() {
    ///     ::timely::example(|scope| {
    ///         // report the number of occurrences of each key
    ///         scope.new_collection_from(1 .. 10u32).1
    ///              .map(|x| x / 3)
    ///              .count_total_u();
    ///     });
    /// }
    /// ```
    fn count_total_u(&self) -> Collection<G, (K, R), isize> where K: Unsigned+Copy;
}

impl<G: Scope, K: Data+Default+Hashable, R: Diff> CountTotal<G, K, R> for Collection<G, K, R>
where G::Timestamp: TotalOrder+Lattice+Ord {
    fn count_total(&self) -> Collection<G, (K, R), isize> {
        self.arrange_by_self()
            .count_total_core()
            .map(|(k,c)| (k.item, c))
    }
    fn count_total_u(&self) -> Collection<G, (K, R), isize> where K: Unsigned+Copy {
        self.map(|k| (UnsignedWrapper::from(k), ()))
            .arrange(DefaultKeyTrace::new())
            .count_total_core()
            .map(|(k,c)| (k.item, c))
    }
}


/// Extension trait for the `group_arranged` differential dataflow method.
pub trait CountTotalCore<G: Scope, K: Data, R: Diff> where G::Timestamp: TotalOrder+Lattice+Ord {
    /// Applies `group` to arranged data, and returns an arrangement of output data.
    ///
    /// This method is used by the more ergonomic `group`, `distinct`, and `count` methods, although
    /// it can be very useful if one needs to manually attach and re-use existing arranged collections.
    ///
    /// # Examples
    ///
    /// ```
    /// extern crate timely;
    /// extern crate differential_dataflow;
    ///
    /// use differential_dataflow::input::Input;
    /// use differential_dataflow::operators::arrange::Arrange;
    /// use differential_dataflow::operators::count::CountTotalCore;
    /// use differential_dataflow::trace::Trace;
    /// use differential_dataflow::trace::implementations::ord::OrdKeySpine;
    /// use differential_dataflow::hashable::OrdWrapper;
    ///
    /// fn main() {
    ///     ::timely::example(|scope| {
    ///
    ///         // wrap and order input, then group manually.
    ///         scope.new_collection_from(1 .. 10u32).1
    ///              .map(|x| (OrdWrapper { item: x / 3 }, ()))
    ///              .arrange(OrdKeySpine::new())
    ///              .count_total_core();
    ///     });
    /// }    
    /// ```
    fn count_total_core(&self) -> Collection<G, (K, R), isize>;
}

impl<G: Scope, K: Data, R: Diff, T1> CountTotalCore<G, K, R> for Arranged<G, K, (), R, T1>
where 
    G::Timestamp: TotalOrder+Lattice+Ord,
    T1: TraceReader<K, (), G::Timestamp, R>+Clone+'static,
    T1::Batch: BatchReader<K, (), G::Timestamp, R> {

    fn count_total_core(&self) -> Collection<G, (K, R), isize> {

        let mut trace = self.trace.clone();

        self.stream.unary_stream(Pipeline, "CountTotal", move |input, output| {

            input.for_each(|capability, batches| {

                let mut session = output.session(&capability);
                for batch in batches.drain(..).map(|x| x.item) {

                    let (mut batch_cursor, batch_storage) = batch.cursor();
                    let (mut trace_cursor, trace_storage) = trace.cursor_through(batch.lower()).unwrap();

                    while batch_cursor.key_valid(&batch_storage) {

                        let key = batch_cursor.key(&batch_storage);
                        let mut count = R::zero();

                        trace_cursor.seek_key(&trace_storage, key);
                        if trace_cursor.key_valid(&trace_storage) && trace_cursor.key(&trace_storage) == key {
                            trace_cursor.map_times(&trace_storage, |_, diff| count = count + diff);
                        }

                        batch_cursor.map_times(&batch_storage, |time, diff| {

                            if !count.is_zero() {
                                session.give(((key.clone(), count), time.clone(), -1));
                            }
                            count = count + diff;
                            if !count.is_zero() {
                                session.give(((key.clone(), count), time.clone(), 1));
                            }

                        });

                        batch_cursor.step_key(&batch_storage);
                    }

                    // tidy up the shared input trace.
                    trace.advance_by(batch.upper());
                    trace.distinguish_since(batch.upper());
                }
            });
        })
        .as_collection()
    }
}