differential_dataflow/operators/reduce.rs
1//! Applies a reduction function on records grouped by key.
2//!
3//! The `reduce` operator acts on `(key, val)` data.
4//! Records with the same key are grouped together, and a user-supplied reduction function is applied
5//! to the key and the list of values.
6//! The function is expected to populate a list of output values.
7
8use timely::Container;
9use timely::container::PushInto;
10use crate::hashable::Hashable;
11use crate::{Data, ExchangeData, Collection, IntoOwned};
12use crate::difference::{Semigroup, Abelian};
13
14use timely::order::PartialOrder;
15use timely::progress::frontier::Antichain;
16use timely::progress::Timestamp;
17use timely::dataflow::*;
18use timely::dataflow::operators::Operator;
19use timely::dataflow::channels::pact::Pipeline;
20use timely::dataflow::operators::Capability;
21
22use crate::operators::arrange::{Arranged, ArrangeByKey, ArrangeBySelf, TraceAgent};
23use crate::lattice::Lattice;
24use crate::trace::{Batch, BatchReader, Cursor, Trace, Builder, ExertionLogic, Description};
25use crate::trace::cursor::CursorList;
26use crate::trace::implementations::{KeySpine, KeyBuilder, ValSpine, ValBuilder};
27
28use crate::trace::TraceReader;
29
30/// Extension trait for the `reduce` differential dataflow method.
31pub trait Reduce<G: Scope, K: Data, V: Data, R: Semigroup> where G::Timestamp: Lattice+Ord {
32 /// Applies a reduction function on records grouped by key.
33 ///
34 /// Input data must be structured as `(key, val)` pairs.
35 /// The user-supplied reduction function takes as arguments
36 ///
37 /// 1. a reference to the key,
38 /// 2. a reference to the slice of values and their accumulated updates,
39 /// 3. a mutuable reference to a vector to populate with output values and accumulated updates.
40 ///
41 /// The user logic is only invoked for non-empty input collections, and it is safe to assume that the
42 /// slice of input values is non-empty. The values are presented in sorted order, as defined by their
43 /// `Ord` implementations.
44 ///
45 /// # Examples
46 ///
47 /// ```
48 /// use differential_dataflow::input::Input;
49 /// use differential_dataflow::operators::Reduce;
50 ///
51 /// ::timely::example(|scope| {
52 /// // report the smallest value for each group
53 /// scope.new_collection_from(1 .. 10).1
54 /// .map(|x| (x / 3, x))
55 /// .reduce(|_key, input, output| {
56 /// output.push((*input[0].0, 1))
57 /// });
58 /// });
59 /// ```
60 fn reduce<L, V2: Data, R2: Ord+Abelian+'static>(&self, logic: L) -> Collection<G, (K, V2), R2>
61 where L: FnMut(&K, &[(&V, R)], &mut Vec<(V2, R2)>)+'static {
62 self.reduce_named("Reduce", logic)
63 }
64
65 /// As `reduce` with the ability to name the operator.
66 fn reduce_named<L, V2: Data, R2: Ord+Abelian+'static>(&self, name: &str, logic: L) -> Collection<G, (K, V2), R2>
67 where L: FnMut(&K, &[(&V, R)], &mut Vec<(V2, R2)>)+'static;
68}
69
70impl<G, K, V, R> Reduce<G, K, V, R> for Collection<G, (K, V), R>
71 where
72 G: Scope,
73 G::Timestamp: Lattice+Ord,
74 K: ExchangeData+Hashable,
75 V: ExchangeData,
76 R: ExchangeData+Semigroup,
77 {
78 fn reduce_named<L, V2: Data, R2: Ord+Abelian+'static>(&self, name: &str, logic: L) -> Collection<G, (K, V2), R2>
79 where L: FnMut(&K, &[(&V, R)], &mut Vec<(V2, R2)>)+'static {
80 self.arrange_by_key_named(&format!("Arrange: {}", name))
81 .reduce_named(name, logic)
82 }
83}
84
85impl<G, K: Data, V: Data, T1, R: Ord+Semigroup+'static> Reduce<G, K, V, R> for Arranged<G, T1>
86where
87 G: Scope<Timestamp=T1::Time>,
88 T1: for<'a> TraceReader<Key<'a>=&'a K, Val<'a>=&'a V, Diff=R>+Clone+'static,
89 for<'a> T1::Key<'a> : IntoOwned<'a, Owned = K>,
90 for<'a> T1::Val<'a> : IntoOwned<'a, Owned = V>,
91{
92 fn reduce_named<L, V2: Data, R2: Ord+Abelian+'static>(&self, name: &str, logic: L) -> Collection<G, (K, V2), R2>
93 where L: FnMut(&K, &[(&V, R)], &mut Vec<(V2, R2)>)+'static {
94 self.reduce_abelian::<_,K,V2,ValBuilder<_,_,_,_>,ValSpine<_,_,_,_>>(name, logic)
95 .as_collection(|k,v| (k.clone(), v.clone()))
96 }
97}
98
99/// Extension trait for the `threshold` and `distinct` differential dataflow methods.
100pub trait Threshold<G: Scope, K: Data, R1: Semigroup> where G::Timestamp: Lattice+Ord {
101 /// Transforms the multiplicity of records.
102 ///
103 /// The `threshold` function is obliged to map `R1::zero` to `R2::zero`, or at
104 /// least the computation may behave as if it does. Otherwise, the transformation
105 /// can be nearly arbitrary: the code does not assume any properties of `threshold`.
106 ///
107 /// # Examples
108 ///
109 /// ```
110 /// use differential_dataflow::input::Input;
111 /// use differential_dataflow::operators::Threshold;
112 ///
113 /// ::timely::example(|scope| {
114 /// // report at most one of each key.
115 /// scope.new_collection_from(1 .. 10).1
116 /// .map(|x| x / 3)
117 /// .threshold(|_,c| c % 2);
118 /// });
119 /// ```
120 fn threshold<R2: Ord+Abelian+'static, F: FnMut(&K, &R1)->R2+'static>(&self, thresh: F) -> Collection<G, K, R2> {
121 self.threshold_named("Threshold", thresh)
122 }
123
124 /// A `threshold` with the ability to name the operator.
125 fn threshold_named<R2: Ord+Abelian+'static, F: FnMut(&K, &R1)->R2+'static>(&self, name: &str, thresh: F) -> Collection<G, K, R2>;
126
127 /// Reduces the collection to one occurrence of each distinct element.
128 ///
129 /// # Examples
130 ///
131 /// ```
132 /// use differential_dataflow::input::Input;
133 /// use differential_dataflow::operators::Threshold;
134 ///
135 /// ::timely::example(|scope| {
136 /// // report at most one of each key.
137 /// scope.new_collection_from(1 .. 10).1
138 /// .map(|x| x / 3)
139 /// .distinct();
140 /// });
141 /// ```
142 fn distinct(&self) -> Collection<G, K, isize> {
143 self.distinct_core()
144 }
145
146 /// Distinct for general integer differences.
147 ///
148 /// This method allows `distinct` to produce collections whose difference
149 /// type is something other than an `isize` integer, for example perhaps an
150 /// `i32`.
151 fn distinct_core<R2: Ord+Abelian+'static+From<i8>>(&self) -> Collection<G, K, R2> {
152 self.threshold_named("Distinct", |_,_| R2::from(1i8))
153 }
154}
155
156impl<G: Scope, K: ExchangeData+Hashable, R1: ExchangeData+Semigroup> Threshold<G, K, R1> for Collection<G, K, R1>
157where G::Timestamp: Lattice+Ord {
158 fn threshold_named<R2: Ord+Abelian+'static, F: FnMut(&K,&R1)->R2+'static>(&self, name: &str, thresh: F) -> Collection<G, K, R2> {
159 self.arrange_by_self_named(&format!("Arrange: {}", name))
160 .threshold_named(name, thresh)
161 }
162}
163
164impl<G, K: Data, T1, R1: Semigroup> Threshold<G, K, R1> for Arranged<G, T1>
165where
166 G: Scope<Timestamp=T1::Time>,
167 T1: for<'a> TraceReader<Key<'a>=&'a K, Val<'a>=&'a (), Diff=R1>+Clone+'static,
168 for<'a> T1::Key<'a>: IntoOwned<'a, Owned = K>,
169{
170 fn threshold_named<R2: Ord+Abelian+'static, F: FnMut(&K,&R1)->R2+'static>(&self, name: &str, mut thresh: F) -> Collection<G, K, R2> {
171 self.reduce_abelian::<_,K,(),KeyBuilder<K,G::Timestamp,R2>,KeySpine<K,G::Timestamp,R2>>(name, move |k,s,t| t.push(((), thresh(k, &s[0].1))))
172 .as_collection(|k,_| k.clone())
173 }
174}
175
176/// Extension trait for the `count` differential dataflow method.
177pub trait Count<G: Scope, K: Data, R: Semigroup> where G::Timestamp: Lattice+Ord {
178 /// Counts the number of occurrences of each element.
179 ///
180 /// # Examples
181 ///
182 /// ```
183 /// use differential_dataflow::input::Input;
184 /// use differential_dataflow::operators::Count;
185 ///
186 /// ::timely::example(|scope| {
187 /// // report the number of occurrences of each key
188 /// scope.new_collection_from(1 .. 10).1
189 /// .map(|x| x / 3)
190 /// .count();
191 /// });
192 /// ```
193 fn count(&self) -> Collection<G, (K, R), isize> {
194 self.count_core()
195 }
196
197 /// Count for general integer differences.
198 ///
199 /// This method allows `count` to produce collections whose difference
200 /// type is something other than an `isize` integer, for example perhaps an
201 /// `i32`.
202 fn count_core<R2: Ord + Abelian + From<i8> + 'static>(&self) -> Collection<G, (K, R), R2>;
203}
204
205impl<G: Scope, K: ExchangeData+Hashable, R: ExchangeData+Semigroup> Count<G, K, R> for Collection<G, K, R>
206where
207 G::Timestamp: Lattice+Ord,
208{
209 fn count_core<R2: Ord + Abelian + From<i8> + 'static>(&self) -> Collection<G, (K, R), R2> {
210 self.arrange_by_self_named("Arrange: Count")
211 .count_core()
212 }
213}
214
215impl<G, K: Data, T1, R: Data+Semigroup> Count<G, K, R> for Arranged<G, T1>
216where
217 G: Scope<Timestamp=T1::Time>,
218 T1: for<'a> TraceReader<Key<'a>=&'a K, Val<'a>=&'a (), Diff=R>+Clone+'static,
219 for<'a> T1::Key<'a>: IntoOwned<'a, Owned = K>,
220{
221 fn count_core<R2: Ord + Abelian + From<i8> + 'static>(&self) -> Collection<G, (K, R), R2> {
222 self.reduce_abelian::<_,K,R,ValBuilder<K,R,G::Timestamp,R2>,ValSpine<K,R,G::Timestamp,R2>>("Count", |_k,s,t| t.push((s[0].1.clone(), R2::from(1i8))))
223 .as_collection(|k,c| (k.clone(), c.clone()))
224 }
225}
226
227/// Extension trait for the `reduce_core` differential dataflow method.
228pub trait ReduceCore<G: Scope, K: ToOwned + ?Sized, V: Data, R: Semigroup> where G::Timestamp: Lattice+Ord {
229 /// Applies `reduce` to arranged data, and returns an arrangement of output data.
230 ///
231 /// This method is used by the more ergonomic `reduce`, `distinct`, and `count` methods, although
232 /// it can be very useful if one needs to manually attach and re-use existing arranged collections.
233 ///
234 /// # Examples
235 ///
236 /// ```
237 /// use differential_dataflow::input::Input;
238 /// use differential_dataflow::operators::reduce::ReduceCore;
239 /// use differential_dataflow::trace::Trace;
240 /// use differential_dataflow::trace::implementations::{ValBuilder, ValSpine};
241 ///
242 /// ::timely::example(|scope| {
243 ///
244 /// let trace =
245 /// scope.new_collection_from(1 .. 10u32).1
246 /// .map(|x| (x, x))
247 /// .reduce_abelian::<_,ValBuilder<_,_,_,_>,ValSpine<_,_,_,_>>(
248 /// "Example",
249 /// move |_key, src, dst| dst.push((*src[0].0, 1))
250 /// )
251 /// .trace;
252 /// });
253 /// ```
254 fn reduce_abelian<L, Bu, T2>(&self, name: &str, mut logic: L) -> Arranged<G, TraceAgent<T2>>
255 where
256 T2: for<'a> Trace<Key<'a>= &'a K, Time=G::Timestamp>+'static,
257 for<'a> T2::Val<'a> : IntoOwned<'a, Owned = V>,
258 T2::Diff: Abelian,
259 T2::Batch: Batch,
260 Bu: Builder<Time=T2::Time, Input = Vec<((K::Owned, V), T2::Time, T2::Diff)>, Output = T2::Batch>,
261 L: FnMut(&K, &[(&V, R)], &mut Vec<(V, T2::Diff)>)+'static,
262 {
263 self.reduce_core::<_,Bu,T2>(name, move |key, input, output, change| {
264 if !input.is_empty() {
265 logic(key, input, change);
266 }
267 change.extend(output.drain(..).map(|(x,mut d)| { d.negate(); (x, d) }));
268 crate::consolidation::consolidate(change);
269 })
270 }
271
272 /// Solves for output updates when presented with inputs and would-be outputs.
273 ///
274 /// Unlike `reduce_arranged`, this method may be called with an empty `input`,
275 /// and it may not be safe to index into the first element.
276 /// At least one of the two collections will be non-empty.
277 fn reduce_core<L, Bu, T2>(&self, name: &str, logic: L) -> Arranged<G, TraceAgent<T2>>
278 where
279 T2: for<'a> Trace<Key<'a>=&'a K, Time=G::Timestamp>+'static,
280 for<'a> T2::Val<'a> : IntoOwned<'a, Owned = V>,
281 T2::Batch: Batch,
282 Bu: Builder<Time=T2::Time, Input = Vec<((K::Owned, V), T2::Time, T2::Diff)>, Output = T2::Batch>,
283 L: FnMut(&K, &[(&V, R)], &mut Vec<(V,T2::Diff)>, &mut Vec<(V, T2::Diff)>)+'static,
284 ;
285}
286
287impl<G, K, V, R> ReduceCore<G, K, V, R> for Collection<G, (K, V), R>
288where
289 G: Scope,
290 G::Timestamp: Lattice+Ord,
291 K: ExchangeData+Hashable,
292 V: ExchangeData,
293 R: ExchangeData+Semigroup,
294{
295 fn reduce_core<L, Bu, T2>(&self, name: &str, logic: L) -> Arranged<G, TraceAgent<T2>>
296 where
297 V: Data,
298 T2: for<'a> Trace<Key<'a>=&'a K, Time=G::Timestamp>+'static,
299 for<'a> T2::Val<'a> : IntoOwned<'a, Owned = V>,
300 T2::Batch: Batch,
301 Bu: Builder<Time=T2::Time, Input = Vec<((K, V), T2::Time, T2::Diff)>, Output = T2::Batch>,
302 L: FnMut(&K, &[(&V, R)], &mut Vec<(V,T2::Diff)>, &mut Vec<(V, T2::Diff)>)+'static,
303 {
304 self.arrange_by_key_named(&format!("Arrange: {}", name))
305 .reduce_core::<_,_,_,Bu,_>(name, logic)
306 }
307}
308
309/// A key-wise reduction of values in an input trace.
310///
311/// This method exists to provide reduce functionality without opinions about qualifying trace types.
312pub fn reduce_trace<G, T1, Bu, T2, K, V, L>(trace: &Arranged<G, T1>, name: &str, mut logic: L) -> Arranged<G, TraceAgent<T2>>
313where
314 G: Scope<Timestamp=T1::Time>,
315 T1: TraceReader + Clone + 'static,
316 for<'a> T1::Key<'a> : IntoOwned<'a, Owned = K>,
317 T2: for<'a> Trace<Key<'a>=T1::Key<'a>, Time=T1::Time> + 'static,
318 K: Ord + 'static,
319 V: Data,
320 for<'a> T2::Val<'a> : IntoOwned<'a, Owned = V>,
321 T2::Batch: Batch,
322 Bu: Builder<Time=T2::Time, Output = T2::Batch>,
323 Bu::Input: Container + PushInto<((K, V), T2::Time, T2::Diff)>,
324 L: FnMut(T1::Key<'_>, &[(T1::Val<'_>, T1::Diff)], &mut Vec<(V,T2::Diff)>, &mut Vec<(V, T2::Diff)>)+'static,
325{
326 let mut result_trace = None;
327
328 // fabricate a data-parallel operator using the `unary_notify` pattern.
329 let stream = {
330
331 let result_trace = &mut result_trace;
332 trace.stream.unary_frontier(Pipeline, name, move |_capability, operator_info| {
333
334 // Acquire a logger for arrange events.
335 let logger = trace.stream.scope().logger_for::<crate::logging::DifferentialEventBuilder>("differential/arrange").map(Into::into);
336
337 let activator = Some(trace.stream.scope().activator_for(operator_info.address.clone()));
338 let mut empty = T2::new(operator_info.clone(), logger.clone(), activator);
339 // If there is default exert logic set, install it.
340 if let Some(exert_logic) = trace.stream.scope().config().get::<ExertionLogic>("differential/default_exert_logic").cloned() {
341 empty.set_exert_logic(exert_logic);
342 }
343
344
345 let mut source_trace = trace.trace.clone();
346
347 let (mut output_reader, mut output_writer) = TraceAgent::new(empty, operator_info, logger);
348
349 // let mut output_trace = TraceRc::make_from(agent).0;
350 *result_trace = Some(output_reader.clone());
351
352 // let mut thinker1 = history_replay_prior::HistoryReplayer::<V, V2, G::Timestamp, R, R2>::new();
353 // let mut thinker = history_replay::HistoryReplayer::<V, V2, G::Timestamp, R, R2>::new();
354 let mut new_interesting_times = Vec::<G::Timestamp>::new();
355
356 // Our implementation maintains a list of outstanding `(key, time)` synthetic interesting times,
357 // as well as capabilities for these times (or their lower envelope, at least).
358 let mut interesting = Vec::<(K, G::Timestamp)>::new();
359 let mut capabilities = Vec::<Capability<G::Timestamp>>::new();
360
361 // buffers and logic for computing per-key interesting times "efficiently".
362 let mut interesting_times = Vec::<G::Timestamp>::new();
363
364 // Upper and lower frontiers for the pending input and output batches to process.
365 let mut upper_limit = Antichain::from_elem(<G::Timestamp as timely::progress::Timestamp>::minimum());
366 let mut lower_limit = Antichain::from_elem(<G::Timestamp as timely::progress::Timestamp>::minimum());
367
368 // Output batches may need to be built piecemeal, and these temp storage help there.
369 let mut output_upper = Antichain::from_elem(<G::Timestamp as timely::progress::Timestamp>::minimum());
370 let mut output_lower = Antichain::from_elem(<G::Timestamp as timely::progress::Timestamp>::minimum());
371
372 let id = trace.stream.scope().index();
373
374 move |input, output| {
375
376 // The `reduce` operator receives fully formed batches, which each serve as an indication
377 // that the frontier has advanced to the upper bound of their description.
378 //
379 // Although we could act on each individually, several may have been sent, and it makes
380 // sense to accumulate them first to coordinate their re-evaluation. We will need to pay
381 // attention to which times need to be collected under which capability, so that we can
382 // assemble output batches correctly. We will maintain several builders concurrently, and
383 // place output updates into the appropriate builder.
384 //
385 // It turns out we must use notificators, as we cannot await empty batches from arrange to
386 // indicate progress, as the arrange may not hold the capability to send such. Instead, we
387 // must watch for progress here (and the upper bound of received batches) to tell us how
388 // far we can process work.
389 //
390 // We really want to retire all batches we receive, so we want a frontier which reflects
391 // both information from batches as well as progress information. I think this means that
392 // we keep times that are greater than or equal to a time in the other frontier, deduplicated.
393
394 let mut batch_cursors = Vec::new();
395 let mut batch_storage = Vec::new();
396
397 // Downgrade previous upper limit to be current lower limit.
398 lower_limit.clear();
399 lower_limit.extend(upper_limit.borrow().iter().cloned());
400
401 // Drain the input stream of batches, validating the contiguity of the batch descriptions and
402 // capturing a cursor for each of the batches as well as ensuring we hold a capability for the
403 // times in the batch.
404 input.for_each(|capability, batches| {
405
406 for batch in batches.drain(..) {
407 upper_limit.clone_from(batch.upper());
408 batch_cursors.push(batch.cursor());
409 batch_storage.push(batch);
410 }
411
412 // Ensure that `capabilities` covers the capability of the batch.
413 capabilities.retain(|cap| !capability.time().less_than(cap.time()));
414 if !capabilities.iter().any(|cap| cap.time().less_equal(capability.time())) {
415 capabilities.push(capability.retain());
416 }
417 });
418
419 // Pull in any subsequent empty batches we believe to exist.
420 source_trace.advance_upper(&mut upper_limit);
421
422 // Only if our upper limit has advanced should we do work.
423 if upper_limit != lower_limit {
424
425 // If we have no capabilities, then we (i) should not produce any outputs and (ii) could not send
426 // any produced outputs even if they were (incorrectly) produced. We cannot even send empty batches
427 // to indicate forward progress, and must hope that downstream operators look at progress frontiers
428 // as well as batch descriptions.
429 //
430 // We can (and should) advance source and output traces if `upper_limit` indicates this is possible.
431 if capabilities.iter().any(|c| !upper_limit.less_equal(c.time())) {
432
433 // `interesting` contains "warnings" about keys and times that may need to be re-considered.
434 // We first extract those times from this list that lie in the interval we will process.
435 sort_dedup(&mut interesting);
436 // `exposed` contains interesting (key, time)s now below `upper_limit`
437 let exposed = {
438 let (exposed, new_interesting) = interesting.drain(..).partition(|(_, time)| !upper_limit.less_equal(time));
439 interesting = new_interesting;
440 exposed
441 };
442
443 // Prepare an output buffer and builder for each capability.
444 //
445 // We buffer and build separately, as outputs are produced grouped by time, whereas the
446 // builder wants to see outputs grouped by value. While the per-key computation could
447 // do the re-sorting itself, buffering per-key outputs lets us double check the results
448 // against other implementations for accuracy.
449 //
450 // TODO: It would be better if all updates went into one batch, but timely dataflow prevents
451 // this as long as it requires that there is only one capability for each message.
452 let mut buffers = Vec::<(G::Timestamp, Vec<(V, G::Timestamp, T2::Diff)>)>::new();
453 let mut builders = Vec::new();
454 for cap in capabilities.iter() {
455 buffers.push((cap.time().clone(), Vec::new()));
456 builders.push(Bu::new());
457 }
458
459 let mut buffer = Bu::Input::default();
460
461 // cursors for navigating input and output traces.
462 let (mut source_cursor, source_storage): (T1::Cursor, _) = source_trace.cursor_through(lower_limit.borrow()).expect("failed to acquire source cursor");
463 let source_storage = &source_storage;
464 let (mut output_cursor, output_storage): (T2::Cursor, _) = output_reader.cursor_through(lower_limit.borrow()).expect("failed to acquire output cursor");
465 let output_storage = &output_storage;
466 let (mut batch_cursor, batch_storage) = (CursorList::new(batch_cursors, &batch_storage), batch_storage);
467 let batch_storage = &batch_storage;
468
469 let mut thinker = history_replay::HistoryReplayer::new();
470
471 // We now march through the keys we must work on, drawing from `batch_cursors` and `exposed`.
472 //
473 // We only keep valid cursors (those with more data) in `batch_cursors`, and so its length
474 // indicates whether more data remain. We move through `exposed` using (index) `exposed_position`.
475 // There could perhaps be a less provocative variable name.
476 let mut exposed_position = 0;
477 while batch_cursor.key_valid(batch_storage) || exposed_position < exposed.len() {
478
479 use std::borrow::Borrow;
480
481 // Determine the next key we will work on; could be synthetic, could be from a batch.
482 let key1 = exposed.get(exposed_position).map(|x| <_ as IntoOwned>::borrow_as(&x.0));
483 let key2 = batch_cursor.get_key(batch_storage);
484 let key = match (key1, key2) {
485 (Some(key1), Some(key2)) => ::std::cmp::min(key1, key2),
486 (Some(key1), None) => key1,
487 (None, Some(key2)) => key2,
488 (None, None) => unreachable!(),
489 };
490
491 // `interesting_times` contains those times between `lower_issued` and `upper_limit`
492 // that we need to re-consider. We now populate it, but perhaps this should be left
493 // to the per-key computation, which may be able to avoid examining the times of some
494 // values (for example, in the case of min/max/topk).
495 interesting_times.clear();
496
497 // Populate `interesting_times` with synthetic interesting times (below `upper_limit`) for this key.
498 while exposed.get(exposed_position).map(|x| x.0.borrow()).map(|k| key.eq(&<T1::Key<'_> as IntoOwned>::borrow_as(&k))).unwrap_or(false) {
499 interesting_times.push(exposed[exposed_position].1.clone());
500 exposed_position += 1;
501 }
502
503 // tidy up times, removing redundancy.
504 sort_dedup(&mut interesting_times);
505
506 // do the per-key computation.
507 let _counters = thinker.compute(
508 key,
509 (&mut source_cursor, source_storage),
510 (&mut output_cursor, output_storage),
511 (&mut batch_cursor, batch_storage),
512 &mut interesting_times,
513 &mut logic,
514 &upper_limit,
515 &mut buffers[..],
516 &mut new_interesting_times,
517 );
518
519 if batch_cursor.get_key(batch_storage) == Some(key) {
520 batch_cursor.step_key(batch_storage);
521 }
522
523 // Record future warnings about interesting times (and assert they should be "future").
524 for time in new_interesting_times.drain(..) {
525 debug_assert!(upper_limit.less_equal(&time));
526 interesting.push((key.into_owned(), time));
527 }
528
529 // Sort each buffer by value and move into the corresponding builder.
530 // TODO: This makes assumptions about at least one of (i) the stability of `sort_by`,
531 // (ii) that the buffers are time-ordered, and (iii) that the builders accept
532 // arbitrarily ordered times.
533 for index in 0 .. buffers.len() {
534 buffers[index].1.sort_by(|x,y| x.0.cmp(&y.0));
535 for (val, time, diff) in buffers[index].1.drain(..) {
536 buffer.push_into(((key.into_owned(), val), time, diff));
537 builders[index].push(&mut buffer);
538 buffer.clear();
539 }
540 }
541 }
542
543 // We start sealing output batches from the lower limit (previous upper limit).
544 // In principle, we could update `lower_limit` itself, and it should arrive at
545 // `upper_limit` by the end of the process.
546 output_lower.clear();
547 output_lower.extend(lower_limit.borrow().iter().cloned());
548
549 // build and ship each batch (because only one capability per message).
550 for (index, builder) in builders.drain(..).enumerate() {
551
552 // Form the upper limit of the next batch, which includes all times greater
553 // than the input batch, or the capabilities from i + 1 onward.
554 output_upper.clear();
555 output_upper.extend(upper_limit.borrow().iter().cloned());
556 for capability in &capabilities[index + 1 ..] {
557 output_upper.insert(capability.time().clone());
558 }
559
560 if output_upper.borrow() != output_lower.borrow() {
561
562 let description = Description::new(output_lower.clone(), output_upper.clone(), Antichain::from_elem(G::Timestamp::minimum()));
563 let batch = builder.done(description);
564
565 // ship batch to the output, and commit to the output trace.
566 output.session(&capabilities[index]).give(batch.clone());
567 output_writer.insert(batch, Some(capabilities[index].time().clone()));
568
569 output_lower.clear();
570 output_lower.extend(output_upper.borrow().iter().cloned());
571 }
572 }
573
574 // This should be true, as the final iteration introduces no capabilities, and
575 // uses exactly `upper_limit` to determine the upper bound. Good to check though.
576 assert!(output_upper.borrow() == upper_limit.borrow());
577
578 // Determine the frontier of our interesting times.
579 let mut frontier = Antichain::<G::Timestamp>::new();
580 for (_, time) in &interesting {
581 frontier.insert_ref(time);
582 }
583
584 // Update `capabilities` to reflect interesting pairs described by `frontier`.
585 let mut new_capabilities = Vec::new();
586 for time in frontier.borrow().iter() {
587 if let Some(cap) = capabilities.iter().find(|c| c.time().less_equal(time)) {
588 new_capabilities.push(cap.delayed(time));
589 }
590 else {
591 println!("{}:\tfailed to find capability less than new frontier time:", id);
592 println!("{}:\t time: {:?}", id, time);
593 println!("{}:\t caps: {:?}", id, capabilities);
594 println!("{}:\t uppr: {:?}", id, upper_limit);
595 }
596 }
597 capabilities = new_capabilities;
598
599 // ensure that observed progress is reflected in the output.
600 output_writer.seal(upper_limit.clone());
601 }
602 else {
603 output_writer.seal(upper_limit.clone());
604 }
605
606 // We only anticipate future times in advance of `upper_limit`.
607 source_trace.set_logical_compaction(upper_limit.borrow());
608 output_reader.set_logical_compaction(upper_limit.borrow());
609
610 // We will only slice the data between future batches.
611 source_trace.set_physical_compaction(upper_limit.borrow());
612 output_reader.set_physical_compaction(upper_limit.borrow());
613 }
614
615 // Exert trace maintenance if we have been so requested.
616 output_writer.exert();
617 }
618 }
619 )
620 };
621
622 Arranged { stream, trace: result_trace.unwrap() }
623}
624
625
626#[inline(never)]
627fn sort_dedup<T: Ord>(list: &mut Vec<T>) {
628 list.dedup();
629 list.sort();
630 list.dedup();
631}
632
633trait PerKeyCompute<'a, C1, C2, C3, V>
634where
635 C1: Cursor,
636 C2: Cursor<Key<'a> = C1::Key<'a>, Time = C1::Time>,
637 C3: Cursor<Key<'a> = C1::Key<'a>, Val<'a> = C1::Val<'a>, Time = C1::Time, Diff = C1::Diff>,
638 V: Clone + Ord,
639 for<'b> C2::Val<'b> : IntoOwned<'b, Owned = V>,
640{
641 fn new() -> Self;
642 fn compute<L>(
643 &mut self,
644 key: C1::Key<'a>,
645 source_cursor: (&mut C1, &'a C1::Storage),
646 output_cursor: (&mut C2, &'a C2::Storage),
647 batch_cursor: (&mut C3, &'a C3::Storage),
648 times: &mut Vec<C1::Time>,
649 logic: &mut L,
650 upper_limit: &Antichain<C1::Time>,
651 outputs: &mut [(C2::Time, Vec<(V, C2::Time, C2::Diff)>)],
652 new_interesting: &mut Vec<C1::Time>) -> (usize, usize)
653 where
654 L: FnMut(
655 C1::Key<'a>,
656 &[(C1::Val<'a>, C1::Diff)],
657 &mut Vec<(V, C2::Diff)>,
658 &mut Vec<(V, C2::Diff)>,
659 );
660}
661
662
663/// Implementation based on replaying historical and new updates together.
664mod history_replay {
665
666 use timely::progress::Antichain;
667 use timely::PartialOrder;
668
669 use crate::lattice::Lattice;
670 use crate::trace::Cursor;
671 use crate::operators::ValueHistory;
672 use crate::IntoOwned;
673
674 use super::{PerKeyCompute, sort_dedup};
675
676 /// The `HistoryReplayer` is a compute strategy based on moving through existing inputs, interesting times, etc in
677 /// time order, maintaining consolidated representations of updates with respect to future interesting times.
678 pub struct HistoryReplayer<'a, C1, C2, C3, V>
679 where
680 C1: Cursor,
681 C2: Cursor<Key<'a> = C1::Key<'a>, Time = C1::Time>,
682 C3: Cursor<Key<'a> = C1::Key<'a>, Val<'a> = C1::Val<'a>, Time = C1::Time, Diff = C1::Diff>,
683 V: Clone + Ord,
684 {
685 input_history: ValueHistory<'a, C1>,
686 output_history: ValueHistory<'a, C2>,
687 batch_history: ValueHistory<'a, C3>,
688 input_buffer: Vec<(C1::Val<'a>, C1::Diff)>,
689 output_buffer: Vec<(V, C2::Diff)>,
690 update_buffer: Vec<(V, C2::Diff)>,
691 output_produced: Vec<((V, C2::Time), C2::Diff)>,
692 synth_times: Vec<C1::Time>,
693 meets: Vec<C1::Time>,
694 times_current: Vec<C1::Time>,
695 temporary: Vec<C1::Time>,
696 }
697
698 impl<'a, C1, C2, C3, V> PerKeyCompute<'a, C1, C2, C3, V> for HistoryReplayer<'a, C1, C2, C3, V>
699 where
700 C1: Cursor,
701 C2: Cursor<Key<'a> = C1::Key<'a>, Time = C1::Time>,
702 C3: Cursor<Key<'a> = C1::Key<'a>, Val<'a> = C1::Val<'a>, Time = C1::Time, Diff = C1::Diff>,
703 V: Clone + Ord,
704 for<'b> C2::Val<'b> : IntoOwned<'b, Owned = V>,
705 {
706 fn new() -> Self {
707 HistoryReplayer {
708 input_history: ValueHistory::new(),
709 output_history: ValueHistory::new(),
710 batch_history: ValueHistory::new(),
711 input_buffer: Vec::new(),
712 output_buffer: Vec::new(),
713 update_buffer: Vec::new(),
714 output_produced: Vec::new(),
715 synth_times: Vec::new(),
716 meets: Vec::new(),
717 times_current: Vec::new(),
718 temporary: Vec::new(),
719 }
720 }
721 #[inline(never)]
722 fn compute<L>(
723 &mut self,
724 key: C1::Key<'a>,
725 (source_cursor, source_storage): (&mut C1, &'a C1::Storage),
726 (output_cursor, output_storage): (&mut C2, &'a C2::Storage),
727 (batch_cursor, batch_storage): (&mut C3, &'a C3::Storage),
728 times: &mut Vec<C1::Time>,
729 logic: &mut L,
730 upper_limit: &Antichain<C1::Time>,
731 outputs: &mut [(C2::Time, Vec<(V, C2::Time, C2::Diff)>)],
732 new_interesting: &mut Vec<C1::Time>) -> (usize, usize)
733 where
734 L: FnMut(
735 C1::Key<'a>,
736 &[(C1::Val<'a>, C1::Diff)],
737 &mut Vec<(V, C2::Diff)>,
738 &mut Vec<(V, C2::Diff)>,
739 )
740 {
741
742 // The work we need to perform is at times defined principally by the contents of `batch_cursor`
743 // and `times`, respectively "new work we just received" and "old times we were warned about".
744 //
745 // Our first step is to identify these times, so that we can use them to restrict the amount of
746 // information we need to recover from `input` and `output`; as all times of interest will have
747 // some time from `batch_cursor` or `times`, we can compute their meet and advance all other
748 // loaded times by performing the lattice `join` with this value.
749
750 // Load the batch contents.
751 let mut batch_replay = self.batch_history.replay_key(batch_cursor, batch_storage, key, |time| time.into_owned());
752
753 // We determine the meet of times we must reconsider (those from `batch` and `times`). This meet
754 // can be used to advance other historical times, which may consolidate their representation. As
755 // a first step, we determine the meets of each *suffix* of `times`, which we will use as we play
756 // history forward.
757
758 self.meets.clear();
759 self.meets.extend(times.iter().cloned());
760 for index in (1 .. self.meets.len()).rev() {
761 self.meets[index-1] = self.meets[index-1].meet(&self.meets[index]);
762 }
763
764 // Determine the meet of times in `batch` and `times`.
765 let mut meet = None;
766 update_meet(&mut meet, self.meets.get(0));
767 update_meet(&mut meet, batch_replay.meet());
768 // if let Some(time) = self.meets.get(0) {
769 // meet = match meet {
770 // None => Some(self.meets[0].clone()),
771 // Some(x) => Some(x.meet(&self.meets[0])),
772 // };
773 // }
774 // if let Some(time) = batch_replay.meet() {
775 // meet = match meet {
776 // None => Some(time.clone()),
777 // Some(x) => Some(x.meet(&time)),
778 // };
779 // }
780
781 // Having determined the meet, we can load the input and output histories, where we
782 // advance all times by joining them with `meet`. The resulting times are more compact
783 // and guaranteed to accumulate identically for times greater or equal to `meet`.
784
785 // Load the input and output histories.
786 let mut input_replay = if let Some(meet) = meet.as_ref() {
787 self.input_history.replay_key(source_cursor, source_storage, key, |time| {
788 let mut time = time.into_owned();
789 time.join_assign(meet);
790 time
791 })
792 }
793 else {
794 self.input_history.replay_key(source_cursor, source_storage, key, |time| time.into_owned())
795 };
796 let mut output_replay = if let Some(meet) = meet.as_ref() {
797 self.output_history.replay_key(output_cursor, output_storage, key, |time| {
798 let mut time = time.into_owned();
799 time.join_assign(meet);
800 time
801 })
802 }
803 else {
804 self.output_history.replay_key(output_cursor, output_storage, key, |time| time.into_owned())
805 };
806
807 self.synth_times.clear();
808 self.times_current.clear();
809 self.output_produced.clear();
810
811 // The frontier of times we may still consider.
812 // Derived from frontiers of our update histories, supplied times, and synthetic times.
813
814 let mut times_slice = ×[..];
815 let mut meets_slice = &self.meets[..];
816
817 let mut compute_counter = 0;
818 let mut output_counter = 0;
819
820 // We have candidate times from `batch` and `times`, as well as times identified by either
821 // `input` or `output`. Finally, we may have synthetic times produced as the join of times
822 // we consider in the course of evaluation. As long as any of these times exist, we need to
823 // keep examining times.
824 while let Some(next_time) = [ batch_replay.time(),
825 times_slice.first(),
826 input_replay.time(),
827 output_replay.time(),
828 self.synth_times.last(),
829 ].iter().cloned().flatten().min().cloned() {
830
831 // Advance input and output history replayers. This marks applicable updates as active.
832 input_replay.step_while_time_is(&next_time);
833 output_replay.step_while_time_is(&next_time);
834
835 // One of our goals is to determine if `next_time` is "interesting", meaning whether we
836 // have any evidence that we should re-evaluate the user logic at this time. For a time
837 // to be "interesting" it would need to be the join of times that include either a time
838 // from `batch`, `times`, or `synth`. Neither `input` nor `output` times are sufficient.
839
840 // Advance batch history, and capture whether an update exists at `next_time`.
841 let mut interesting = batch_replay.step_while_time_is(&next_time);
842 if interesting {
843 if let Some(meet) = meet.as_ref() {
844 batch_replay.advance_buffer_by(meet);
845 }
846 }
847
848 // advance both `synth_times` and `times_slice`, marking this time interesting if in either.
849 while self.synth_times.last() == Some(&next_time) {
850 // We don't know enough about `next_time` to avoid putting it in to `times_current`.
851 // TODO: If we knew that the time derived from a canceled batch update, we could remove the time.
852 self.times_current.push(self.synth_times.pop().expect("failed to pop from synth_times")); // <-- TODO: this could be a min-heap.
853 interesting = true;
854 }
855 while times_slice.first() == Some(&next_time) {
856 // We know nothing about why we were warned about `next_time`, and must include it to scare future times.
857 self.times_current.push(times_slice[0].clone());
858 times_slice = ×_slice[1..];
859 meets_slice = &meets_slice[1..];
860 interesting = true;
861 }
862
863 // Times could also be interesting if an interesting time is less than them, as they would join
864 // and become the time itself. They may not equal the current time because whatever frontier we
865 // are tracking may not have advanced far enough.
866 // TODO: `batch_history` may or may not be super compact at this point, and so this check might
867 // yield false positives if not sufficiently compact. Maybe we should into this and see.
868 interesting = interesting || batch_replay.buffer().iter().any(|&((_, ref t),_)| t.less_equal(&next_time));
869 interesting = interesting || self.times_current.iter().any(|t| t.less_equal(&next_time));
870
871 // We should only process times that are not in advance of `upper_limit`.
872 //
873 // We have no particular guarantee that known times will not be in advance of `upper_limit`.
874 // We may have the guarantee that synthetic times will not be, as we test against the limit
875 // before we add the time to `synth_times`.
876 if !upper_limit.less_equal(&next_time) {
877
878 // We should re-evaluate the computation if this is an interesting time.
879 // If the time is uninteresting (and our logic is sound) it is not possible for there to be
880 // output produced. This sounds like a good test to have for debug builds!
881 if interesting {
882
883 compute_counter += 1;
884
885 // Assemble the input collection at `next_time`. (`self.input_buffer` cleared just after use).
886 debug_assert!(self.input_buffer.is_empty());
887 meet.as_ref().map(|meet| input_replay.advance_buffer_by(meet));
888 for &((value, ref time), ref diff) in input_replay.buffer().iter() {
889 if time.less_equal(&next_time) {
890 self.input_buffer.push((value, diff.clone()));
891 }
892 else {
893 self.temporary.push(next_time.join(time));
894 }
895 }
896 for &((value, ref time), ref diff) in batch_replay.buffer().iter() {
897 if time.less_equal(&next_time) {
898 self.input_buffer.push((value, diff.clone()));
899 }
900 else {
901 self.temporary.push(next_time.join(time));
902 }
903 }
904 crate::consolidation::consolidate(&mut self.input_buffer);
905
906 meet.as_ref().map(|meet| output_replay.advance_buffer_by(meet));
907 for &((value, ref time), ref diff) in output_replay.buffer().iter() {
908 if time.less_equal(&next_time) {
909 self.output_buffer.push((value.into_owned(), diff.clone()));
910 }
911 else {
912 self.temporary.push(next_time.join(time));
913 }
914 }
915 for &((ref value, ref time), ref diff) in self.output_produced.iter() {
916 if time.less_equal(&next_time) {
917 self.output_buffer.push(((*value).to_owned(), diff.clone()));
918 }
919 else {
920 self.temporary.push(next_time.join(time));
921 }
922 }
923 crate::consolidation::consolidate(&mut self.output_buffer);
924
925 // Apply user logic if non-empty input and see what happens!
926 if !self.input_buffer.is_empty() || !self.output_buffer.is_empty() {
927 logic(key, &self.input_buffer[..], &mut self.output_buffer, &mut self.update_buffer);
928 self.input_buffer.clear();
929 self.output_buffer.clear();
930 }
931
932 // output_replay.advance_buffer_by(&meet);
933 // for &((ref value, ref time), diff) in output_replay.buffer().iter() {
934 // if time.less_equal(&next_time) {
935 // self.output_buffer.push(((*value).clone(), -diff));
936 // }
937 // else {
938 // self.temporary.push(next_time.join(time));
939 // }
940 // }
941 // for &((ref value, ref time), diff) in self.output_produced.iter() {
942 // if time.less_equal(&next_time) {
943 // self.output_buffer.push(((*value).clone(), -diff));
944 // }
945 // else {
946 // self.temporary.push(next_time.join(&time));
947 // }
948 // }
949
950 // Having subtracted output updates from user output, consolidate the results to determine
951 // if there is anything worth reporting. Note: this also orders the results by value, so
952 // that could make the above merging plan even easier.
953 crate::consolidation::consolidate(&mut self.update_buffer);
954
955 // Stash produced updates into both capability-indexed buffers and `output_produced`.
956 // The two locations are important, in that we will compact `output_produced` as we move
957 // through times, but we cannot compact the output buffers because we need their actual
958 // times.
959 if !self.update_buffer.is_empty() {
960
961 output_counter += 1;
962
963 // We *should* be able to find a capability for `next_time`. Any thing else would
964 // indicate a logical error somewhere along the way; either we release a capability
965 // we should have kept, or we have computed the output incorrectly (or both!)
966 let idx = outputs.iter().rev().position(|(time, _)| time.less_equal(&next_time));
967 let idx = outputs.len() - idx.expect("failed to find index") - 1;
968 for (val, diff) in self.update_buffer.drain(..) {
969 self.output_produced.push(((val.clone(), next_time.clone()), diff.clone()));
970 outputs[idx].1.push((val, next_time.clone(), diff));
971 }
972
973 // Advance times in `self.output_produced` and consolidate the representation.
974 // NOTE: We only do this when we add records; it could be that there are situations
975 // where we want to consolidate even without changes (because an initially
976 // large collection can now be collapsed).
977 if let Some(meet) = meet.as_ref() {
978 for entry in &mut self.output_produced {
979 (entry.0).1 = (entry.0).1.join(meet);
980 }
981 }
982 crate::consolidation::consolidate(&mut self.output_produced);
983 }
984 }
985
986 // Determine synthetic interesting times.
987 //
988 // Synthetic interesting times are produced differently for interesting and uninteresting
989 // times. An uninteresting time must join with an interesting time to become interesting,
990 // which means joins with `self.batch_history` and `self.times_current`. I think we can
991 // skip `self.synth_times` as we haven't gotten to them yet, but we will and they will be
992 // joined against everything.
993
994 // Any time, even uninteresting times, must be joined with the current accumulation of
995 // batch times as well as the current accumulation of `times_current`.
996 for &((_, ref time), _) in batch_replay.buffer().iter() {
997 if !time.less_equal(&next_time) {
998 self.temporary.push(time.join(&next_time));
999 }
1000 }
1001 for time in self.times_current.iter() {
1002 if !time.less_equal(&next_time) {
1003 self.temporary.push(time.join(&next_time));
1004 }
1005 }
1006
1007 sort_dedup(&mut self.temporary);
1008
1009 // Introduce synthetic times, and re-organize if we add any.
1010 let synth_len = self.synth_times.len();
1011 for time in self.temporary.drain(..) {
1012 // We can either service `join` now, or must delay for the future.
1013 if upper_limit.less_equal(&time) {
1014 debug_assert!(outputs.iter().any(|(t,_)| t.less_equal(&time)));
1015 new_interesting.push(time);
1016 }
1017 else {
1018 self.synth_times.push(time);
1019 }
1020 }
1021 if self.synth_times.len() > synth_len {
1022 self.synth_times.sort_by(|x,y| y.cmp(x));
1023 self.synth_times.dedup();
1024 }
1025 }
1026 else if interesting {
1027 // We cannot process `next_time` now, and must delay it.
1028 //
1029 // I think we are probably only here because of an uninteresting time declared interesting,
1030 // as initial interesting times are filtered to be in interval, and synthetic times are also
1031 // filtered before introducing them to `self.synth_times`.
1032 new_interesting.push(next_time.clone());
1033 debug_assert!(outputs.iter().any(|(t,_)| t.less_equal(&next_time)))
1034 }
1035
1036
1037 // Update `meet` to track the meet of each source of times.
1038 meet = None;//T::maximum();
1039 update_meet(&mut meet, batch_replay.meet());
1040 update_meet(&mut meet, input_replay.meet());
1041 update_meet(&mut meet, output_replay.meet());
1042 for time in self.synth_times.iter() { update_meet(&mut meet, Some(time)); }
1043 // if let Some(time) = batch_replay.meet() { meet = meet.meet(time); }
1044 // if let Some(time) = input_replay.meet() { meet = meet.meet(time); }
1045 // if let Some(time) = output_replay.meet() { meet = meet.meet(time); }
1046 // for time in self.synth_times.iter() { meet = meet.meet(time); }
1047 update_meet(&mut meet, meets_slice.first());
1048 // if let Some(time) = meets_slice.first() { meet = meet.meet(time); }
1049
1050 // Update `times_current` by the frontier.
1051 if let Some(meet) = meet.as_ref() {
1052 for time in self.times_current.iter_mut() {
1053 *time = time.join(meet);
1054 }
1055 }
1056
1057 sort_dedup(&mut self.times_current);
1058 }
1059
1060 // Normalize the representation of `new_interesting`, deduplicating and ordering.
1061 sort_dedup(new_interesting);
1062
1063 (compute_counter, output_counter)
1064 }
1065 }
1066
1067 /// Updates an optional meet by an optional time.
1068 fn update_meet<T: Lattice+Clone>(meet: &mut Option<T>, other: Option<&T>) {
1069 if let Some(time) = other {
1070 if let Some(meet) = meet.as_mut() {
1071 *meet = meet.meet(time);
1072 }
1073 if meet.is_none() {
1074 *meet = Some(time.clone());
1075 }
1076 }
1077 }
1078}