differential_dataflow/operators/reduce.rs
1//! Applies a reduction function on records grouped by key.
2//!
3//! The `reduce` operator acts on `(key, val)` data.
4//! Records with the same key are grouped together, and a user-supplied reduction function is applied
5//! to the key and the list of values.
6//! The function is expected to populate a list of output values.
7
8use crate::hashable::Hashable;
9use crate::{Data, ExchangeData, Collection};
10use crate::difference::{Semigroup, Abelian};
11
12use timely::order::PartialOrder;
13use timely::progress::frontier::Antichain;
14use timely::progress::Timestamp;
15use timely::dataflow::*;
16use timely::dataflow::operators::Operator;
17use timely::dataflow::channels::pact::Pipeline;
18use timely::dataflow::operators::Capability;
19
20use crate::operators::arrange::{Arranged, ArrangeByKey, ArrangeBySelf, TraceAgent};
21use crate::lattice::Lattice;
22use crate::trace::{Batch, BatchReader, Cursor, Trace, Builder, ExertionLogic};
23use crate::trace::cursor::CursorList;
24use crate::trace::implementations::{KeySpine, ValSpine};
25
26use crate::trace::TraceReader;
27
28/// Extension trait for the `reduce` differential dataflow method.
29pub trait Reduce<G: Scope, K: Data, V: Data, R: Semigroup> where G::Timestamp: Lattice+Ord {
30 /// Applies a reduction function on records grouped by key.
31 ///
32 /// Input data must be structured as `(key, val)` pairs.
33 /// The user-supplied reduction function takes as arguments
34 ///
35 /// 1. a reference to the key,
36 /// 2. a reference to the slice of values and their accumulated updates,
37 /// 3. a mutuable reference to a vector to populate with output values and accumulated updates.
38 ///
39 /// The user logic is only invoked for non-empty input collections, and it is safe to assume that the
40 /// slice of input values is non-empty. The values are presented in sorted order, as defined by their
41 /// `Ord` implementations.
42 ///
43 /// # Examples
44 ///
45 /// ```
46 /// use differential_dataflow::input::Input;
47 /// use differential_dataflow::operators::Reduce;
48 ///
49 /// ::timely::example(|scope| {
50 /// // report the smallest value for each group
51 /// scope.new_collection_from(1 .. 10).1
52 /// .map(|x| (x / 3, x))
53 /// .reduce(|_key, input, output| {
54 /// output.push((*input[0].0, 1))
55 /// });
56 /// });
57 /// ```
58 fn reduce<L, V2: Data, R2: Abelian>(&self, logic: L) -> Collection<G, (K, V2), R2>
59 where L: FnMut(&K, &[(&V, R)], &mut Vec<(V2, R2)>)+'static {
60 self.reduce_named("Reduce", logic)
61 }
62
63 /// As `reduce` with the ability to name the operator.
64 fn reduce_named<L, V2: Data, R2: Abelian>(&self, name: &str, logic: L) -> Collection<G, (K, V2), R2>
65 where L: FnMut(&K, &[(&V, R)], &mut Vec<(V2, R2)>)+'static;
66}
67
68impl<G, K, V, R> Reduce<G, K, V, R> for Collection<G, (K, V), R>
69 where
70 G: Scope,
71 G::Timestamp: Lattice+Ord,
72 K: ExchangeData+Hashable,
73 V: ExchangeData,
74 R: ExchangeData+Semigroup,
75 {
76 fn reduce_named<L, V2: Data, R2: Abelian>(&self, name: &str, logic: L) -> Collection<G, (K, V2), R2>
77 where L: FnMut(&K, &[(&V, R)], &mut Vec<(V2, R2)>)+'static {
78 self.arrange_by_key_named(&format!("Arrange: {}", name))
79 .reduce_named(name, logic)
80 }
81}
82
83impl<G: Scope, K: Data, V: Data, T1, R: Semigroup> Reduce<G, K, V, R> for Arranged<G, T1>
84where
85 G::Timestamp: Lattice+Ord,
86 T1: for<'a> TraceReader<Key<'a>=&'a K, KeyOwned=K, Val<'a>=&'a V, Time=G::Timestamp, Diff=R>+Clone+'static,
87{
88 fn reduce_named<L, V2: Data, R2: Abelian>(&self, name: &str, logic: L) -> Collection<G, (K, V2), R2>
89 where L: FnMut(&K, &[(&V, R)], &mut Vec<(V2, R2)>)+'static {
90 self.reduce_abelian::<_,ValSpine<_,_,_,_>>(name, logic)
91 .as_collection(|k,v| (k.clone(), v.clone()))
92 }
93}
94
95/// Extension trait for the `threshold` and `distinct` differential dataflow methods.
96pub trait Threshold<G: Scope, K: Data, R1: Semigroup> where G::Timestamp: Lattice+Ord {
97 /// Transforms the multiplicity of records.
98 ///
99 /// The `threshold` function is obliged to map `R1::zero` to `R2::zero`, or at
100 /// least the computation may behave as if it does. Otherwise, the transformation
101 /// can be nearly arbitrary: the code does not assume any properties of `threshold`.
102 ///
103 /// # Examples
104 ///
105 /// ```
106 /// use differential_dataflow::input::Input;
107 /// use differential_dataflow::operators::Threshold;
108 ///
109 /// ::timely::example(|scope| {
110 /// // report at most one of each key.
111 /// scope.new_collection_from(1 .. 10).1
112 /// .map(|x| x / 3)
113 /// .threshold(|_,c| c % 2);
114 /// });
115 /// ```
116 fn threshold<R2: Abelian, F: FnMut(&K, &R1)->R2+'static>(&self, thresh: F) -> Collection<G, K, R2> {
117 self.threshold_named("Threshold", thresh)
118 }
119
120 /// A `threshold` with the ability to name the operator.
121 fn threshold_named<R2: Abelian, F: FnMut(&K, &R1)->R2+'static>(&self, name: &str, thresh: F) -> Collection<G, K, R2>;
122
123 /// Reduces the collection to one occurrence of each distinct element.
124 ///
125 /// # Examples
126 ///
127 /// ```
128 /// use differential_dataflow::input::Input;
129 /// use differential_dataflow::operators::Threshold;
130 ///
131 /// ::timely::example(|scope| {
132 /// // report at most one of each key.
133 /// scope.new_collection_from(1 .. 10).1
134 /// .map(|x| x / 3)
135 /// .distinct();
136 /// });
137 /// ```
138 fn distinct(&self) -> Collection<G, K, isize> {
139 self.distinct_core()
140 }
141
142 /// Distinct for general integer differences.
143 ///
144 /// This method allows `distinct` to produce collections whose difference
145 /// type is something other than an `isize` integer, for example perhaps an
146 /// `i32`.
147 fn distinct_core<R2: Abelian+From<i8>>(&self) -> Collection<G, K, R2> {
148 self.threshold_named("Distinct", |_,_| R2::from(1i8))
149 }
150}
151
152impl<G: Scope, K: ExchangeData+Hashable, R1: ExchangeData+Semigroup> Threshold<G, K, R1> for Collection<G, K, R1>
153where G::Timestamp: Lattice+Ord {
154 fn threshold_named<R2: Abelian, F: FnMut(&K,&R1)->R2+'static>(&self, name: &str, thresh: F) -> Collection<G, K, R2> {
155 self.arrange_by_self_named(&format!("Arrange: {}", name))
156 .threshold_named(name, thresh)
157 }
158}
159
160impl<G: Scope, K: Data, T1, R1: Semigroup> Threshold<G, K, R1> for Arranged<G, T1>
161where
162 G::Timestamp: Lattice+Ord,
163 T1: for<'a> TraceReader<Key<'a>=&'a K, KeyOwned=K, Val<'a>=&'a (), Time=G::Timestamp, Diff=R1>+Clone+'static,
164{
165 fn threshold_named<R2: Abelian, F: FnMut(&K,&R1)->R2+'static>(&self, name: &str, mut thresh: F) -> Collection<G, K, R2> {
166 self.reduce_abelian::<_,KeySpine<_,_,_>>(name, move |k,s,t| t.push(((), thresh(k, &s[0].1))))
167 .as_collection(|k,_| k.clone())
168 }
169}
170
171/// Extension trait for the `count` differential dataflow method.
172pub trait Count<G: Scope, K: Data, R: Semigroup> where G::Timestamp: Lattice+Ord {
173 /// Counts the number of occurrences of each element.
174 ///
175 /// # Examples
176 ///
177 /// ```
178 /// use differential_dataflow::input::Input;
179 /// use differential_dataflow::operators::Count;
180 ///
181 /// ::timely::example(|scope| {
182 /// // report the number of occurrences of each key
183 /// scope.new_collection_from(1 .. 10).1
184 /// .map(|x| x / 3)
185 /// .count();
186 /// });
187 /// ```
188 fn count(&self) -> Collection<G, (K, R), isize> {
189 self.count_core()
190 }
191
192 /// Count for general integer differences.
193 ///
194 /// This method allows `count` to produce collections whose difference
195 /// type is something other than an `isize` integer, for example perhaps an
196 /// `i32`.
197 fn count_core<R2: Abelian + From<i8>>(&self) -> Collection<G, (K, R), R2>;
198}
199
200impl<G: Scope, K: ExchangeData+Hashable, R: ExchangeData+Semigroup> Count<G, K, R> for Collection<G, K, R>
201where
202 G::Timestamp: Lattice+Ord,
203{
204 fn count_core<R2: Abelian + From<i8>>(&self) -> Collection<G, (K, R), R2> {
205 self.arrange_by_self_named("Arrange: Count")
206 .count_core()
207 }
208}
209
210impl<G: Scope, K: Data, T1, R: Semigroup> Count<G, K, R> for Arranged<G, T1>
211where
212 G::Timestamp: Lattice+Ord,
213 T1: for<'a> TraceReader<Key<'a>=&'a K, KeyOwned=K, Val<'a>=&'a (), Time=G::Timestamp, Diff=R>+Clone+'static,
214{
215 fn count_core<R2: Abelian + From<i8>>(&self) -> Collection<G, (K, R), R2> {
216 self.reduce_abelian::<_,ValSpine<_,_,_,_>>("Count", |_k,s,t| t.push((s[0].1.clone(), R2::from(1i8))))
217 .as_collection(|k,c| (k.clone(), c.clone()))
218 }
219}
220
221/// Extension trait for the `reduce_core` differential dataflow method.
222pub trait ReduceCore<G: Scope, K: ToOwned + ?Sized, V: ToOwned + ?Sized, R: Semigroup> where G::Timestamp: Lattice+Ord {
223 /// Applies `reduce` to arranged data, and returns an arrangement of output data.
224 ///
225 /// This method is used by the more ergonomic `reduce`, `distinct`, and `count` methods, although
226 /// it can be very useful if one needs to manually attach and re-use existing arranged collections.
227 ///
228 /// # Examples
229 ///
230 /// ```
231 /// use differential_dataflow::input::Input;
232 /// use differential_dataflow::operators::reduce::ReduceCore;
233 /// use differential_dataflow::trace::Trace;
234 /// use differential_dataflow::trace::implementations::ValSpine;
235 ///
236 /// ::timely::example(|scope| {
237 ///
238 /// let trace =
239 /// scope.new_collection_from(1 .. 10u32).1
240 /// .map(|x| (x, x))
241 /// .reduce_abelian::<_,ValSpine<_,_,_,_>>(
242 /// "Example",
243 /// move |_key, src, dst| dst.push((*src[0].0, 1))
244 /// )
245 /// .trace;
246 /// });
247 /// ```
248 fn reduce_abelian<L, T2>(&self, name: &str, mut logic: L) -> Arranged<G, TraceAgent<T2>>
249 where
250 T2: for<'a> Trace<Key<'a>= &'a K, Time=G::Timestamp>+'static,
251 T2::ValOwned: Data,
252 T2::Diff: Abelian,
253 T2::Batch: Batch,
254 T2::Builder: Builder<Output=T2::Batch, Item = ((K::Owned, T2::ValOwned), T2::Time, T2::Diff)>,
255 L: FnMut(&K, &[(&V, R)], &mut Vec<(<T2::Cursor as Cursor>::ValOwned, T2::Diff)>)+'static,
256 {
257 self.reduce_core::<_,T2>(name, move |key, input, output, change| {
258 if !input.is_empty() {
259 logic(key, input, change);
260 }
261 change.extend(output.drain(..).map(|(x,d)| (x, d.negate())));
262 crate::consolidation::consolidate(change);
263 })
264 }
265
266 /// Solves for output updates when presented with inputs and would-be outputs.
267 ///
268 /// Unlike `reduce_arranged`, this method may be called with an empty `input`,
269 /// and it may not be safe to index into the first element.
270 /// At least one of the two collections will be non-empty.
271 fn reduce_core<L, T2>(&self, name: &str, logic: L) -> Arranged<G, TraceAgent<T2>>
272 where
273 T2: for<'a> Trace<Key<'a>=&'a K, Time=G::Timestamp>+'static,
274 T2::ValOwned: Data,
275 T2::Diff: Semigroup,
276 T2::Batch: Batch,
277 T2::Builder: Builder<Output=T2::Batch, Item = ((K::Owned, T2::ValOwned), T2::Time, T2::Diff)>,
278 L: FnMut(&K, &[(&V, R)], &mut Vec<(<T2::Cursor as Cursor>::ValOwned,T2::Diff)>, &mut Vec<(<T2::Cursor as Cursor>::ValOwned, T2::Diff)>)+'static,
279 ;
280}
281
282impl<G, K, V, R> ReduceCore<G, K, V, R> for Collection<G, (K, V), R>
283where
284 G: Scope,
285 G::Timestamp: Lattice+Ord,
286 K: ExchangeData+Hashable,
287 K: ToOwned<Owned = K>,
288 V: ExchangeData,
289 R: ExchangeData+Semigroup,
290{
291 fn reduce_core<L, T2>(&self, name: &str, logic: L) -> Arranged<G, TraceAgent<T2>>
292 where
293 T2::ValOwned: Data,
294 T2::Diff: Semigroup,
295 T2: for<'a> Trace<Key<'a>=&'a K, Time=G::Timestamp>+'static,
296 T2::Batch: Batch,
297 T2::Builder: Builder<Output=T2::Batch, Item = ((K::Owned, T2::ValOwned), T2::Time, T2::Diff)>,
298 L: FnMut(&K, &[(&V, R)], &mut Vec<(<T2::Cursor as Cursor>::ValOwned,T2::Diff)>, &mut Vec<(<T2::Cursor as Cursor>::ValOwned, T2::Diff)>)+'static,
299 {
300 self.arrange_by_key_named(&format!("Arrange: {}", name))
301 .reduce_core(name, logic)
302 }
303}
304
305/// A key-wise reduction of values in an input trace.
306///
307/// This method exists to provide reduce functionality without opinions about qualifying trace types.
308pub fn reduce_trace<G, T1, T2, L>(trace: &Arranged<G, T1>, name: &str, mut logic: L) -> Arranged<G, TraceAgent<T2>>
309where
310 G: Scope,
311 G::Timestamp: Lattice+Ord,
312 T1: TraceReader<Time=G::Timestamp> + Clone + 'static,
313 T1::Diff: Semigroup,
314 T2: for<'a> Trace<Key<'a>=T1::Key<'a>, Time=G::Timestamp> + 'static,
315 T2::ValOwned: Data,
316 T2::Diff: Semigroup,
317 T2::Batch: Batch,
318 T2::Builder: Builder<Output=T2::Batch, Item = ((T1::KeyOwned, T2::ValOwned), T2::Time, T2::Diff)>,
319 L: FnMut(T1::Key<'_>, &[(T1::Val<'_>, T1::Diff)], &mut Vec<(T2::ValOwned,T2::Diff)>, &mut Vec<(T2::ValOwned, T2::Diff)>)+'static,
320{
321 let mut result_trace = None;
322
323 // fabricate a data-parallel operator using the `unary_notify` pattern.
324 let stream = {
325
326 let result_trace = &mut result_trace;
327 trace.stream.unary_frontier(Pipeline, name, move |_capability, operator_info| {
328
329 let logger = {
330 let scope = trace.stream.scope();
331 let register = scope.log_register();
332 register.get::<crate::logging::DifferentialEvent>("differential/arrange")
333 };
334
335 let activator = Some(trace.stream.scope().activator_for(&operator_info.address[..]));
336 let mut empty = T2::new(operator_info.clone(), logger.clone(), activator);
337 // If there is default exert logic set, install it.
338 if let Some(exert_logic) = trace.stream.scope().config().get::<ExertionLogic>("differential/default_exert_logic").cloned() {
339 empty.set_exert_logic(exert_logic);
340 }
341
342
343 let mut source_trace = trace.trace.clone();
344
345 let (mut output_reader, mut output_writer) = TraceAgent::new(empty, operator_info, logger);
346
347 // let mut output_trace = TraceRc::make_from(agent).0;
348 *result_trace = Some(output_reader.clone());
349
350 // let mut thinker1 = history_replay_prior::HistoryReplayer::<V, V2, G::Timestamp, R, R2>::new();
351 // let mut thinker = history_replay::HistoryReplayer::<V, V2, G::Timestamp, R, R2>::new();
352 let mut new_interesting_times = Vec::<G::Timestamp>::new();
353
354 // Our implementation maintains a list of outstanding `(key, time)` synthetic interesting times,
355 // as well as capabilities for these times (or their lower envelope, at least).
356 let mut interesting = Vec::<(T1::KeyOwned, G::Timestamp)>::new();
357 let mut capabilities = Vec::<Capability<G::Timestamp>>::new();
358
359 // buffers and logic for computing per-key interesting times "efficiently".
360 let mut interesting_times = Vec::<G::Timestamp>::new();
361
362 // Upper and lower frontiers for the pending input and output batches to process.
363 let mut upper_limit = Antichain::from_elem(<G::Timestamp as timely::progress::Timestamp>::minimum());
364 let mut lower_limit = Antichain::from_elem(<G::Timestamp as timely::progress::Timestamp>::minimum());
365
366 // Output batches may need to be built piecemeal, and these temp storage help there.
367 let mut output_upper = Antichain::from_elem(<G::Timestamp as timely::progress::Timestamp>::minimum());
368 let mut output_lower = Antichain::from_elem(<G::Timestamp as timely::progress::Timestamp>::minimum());
369
370 let mut input_buffer = Vec::new();
371
372 let id = trace.stream.scope().index();
373
374 move |input, output| {
375
376 // The `reduce` operator receives fully formed batches, which each serve as an indication
377 // that the frontier has advanced to the upper bound of their description.
378 //
379 // Although we could act on each individually, several may have been sent, and it makes
380 // sense to accumulate them first to coordinate their re-evaluation. We will need to pay
381 // attention to which times need to be collected under which capability, so that we can
382 // assemble output batches correctly. We will maintain several builders concurrently, and
383 // place output updates into the appropriate builder.
384 //
385 // It turns out we must use notificators, as we cannot await empty batches from arrange to
386 // indicate progress, as the arrange may not hold the capability to send such. Instead, we
387 // must watch for progress here (and the upper bound of received batches) to tell us how
388 // far we can process work.
389 //
390 // We really want to retire all batches we receive, so we want a frontier which reflects
391 // both information from batches as well as progress information. I think this means that
392 // we keep times that are greater than or equal to a time in the other frontier, deduplicated.
393
394 let mut batch_cursors = Vec::new();
395 let mut batch_storage = Vec::new();
396
397 // Downgrate previous upper limit to be current lower limit.
398 lower_limit.clear();
399 lower_limit.extend(upper_limit.borrow().iter().cloned());
400
401 // Drain the input stream of batches, validating the contiguity of the batch descriptions and
402 // capturing a cursor for each of the batches as well as ensuring we hold a capability for the
403 // times in the batch.
404 input.for_each(|capability, batches| {
405
406 batches.swap(&mut input_buffer);
407 for batch in input_buffer.drain(..) {
408 upper_limit.clone_from(batch.upper());
409 batch_cursors.push(batch.cursor());
410 batch_storage.push(batch);
411 }
412
413 // Ensure that `capabilities` covers the capability of the batch.
414 capabilities.retain(|cap| !capability.time().less_than(cap.time()));
415 if !capabilities.iter().any(|cap| cap.time().less_equal(capability.time())) {
416 capabilities.push(capability.retain());
417 }
418 });
419
420 // Pull in any subsequent empty batches we believe to exist.
421 source_trace.advance_upper(&mut upper_limit);
422
423 // Only if our upper limit has advanced should we do work.
424 if upper_limit != lower_limit {
425
426 // If we have no capabilities, then we (i) should not produce any outputs and (ii) could not send
427 // any produced outputs even if they were (incorrectly) produced. We cannot even send empty batches
428 // to indicate forward progress, and must hope that downstream operators look at progress frontiers
429 // as well as batch descriptions.
430 //
431 // We can (and should) advance source and output traces if `upper_limit` indicates this is possible.
432 if capabilities.iter().any(|c| !upper_limit.less_equal(c.time())) {
433
434 // `interesting` contains "warnings" about keys and times that may need to be re-considered.
435 // We first extract those times from this list that lie in the interval we will process.
436 sort_dedup(&mut interesting);
437 // `exposed` contains interesting (key, time)s now below `upper_limit`
438 let exposed = {
439 let (exposed, new_interesting) = interesting.drain(..).partition(|(_, time)| !upper_limit.less_equal(time));
440 interesting = new_interesting;
441 exposed
442 };
443
444 // Prepare an output buffer and builder for each capability.
445 //
446 // We buffer and build separately, as outputs are produced grouped by time, whereas the
447 // builder wants to see outputs grouped by value. While the per-key computation could
448 // do the re-sorting itself, buffering per-key outputs lets us double check the results
449 // against other implementations for accuracy.
450 //
451 // TODO: It would be better if all updates went into one batch, but timely dataflow prevents
452 // this as long as it requires that there is only one capability for each message.
453 let mut buffers = Vec::<(G::Timestamp, Vec<(<T2::Cursor as Cursor>::ValOwned, G::Timestamp, T2::Diff)>)>::new();
454 let mut builders = Vec::new();
455 for cap in capabilities.iter() {
456 buffers.push((cap.time().clone(), Vec::new()));
457 builders.push(T2::Builder::new());
458 }
459
460 // cursors for navigating input and output traces.
461 let (mut source_cursor, source_storage): (T1::Cursor, _) = source_trace.cursor_through(lower_limit.borrow()).expect("failed to acquire source cursor");
462 let source_storage = &source_storage;
463 let (mut output_cursor, output_storage): (T2::Cursor, _) = output_reader.cursor_through(lower_limit.borrow()).expect("failed to acquire output cursor");
464 let output_storage = &output_storage;
465 let (mut batch_cursor, batch_storage) = (CursorList::new(batch_cursors, &batch_storage), batch_storage);
466 let batch_storage = &batch_storage;
467
468 let mut thinker = history_replay::HistoryReplayer::new();
469
470 // We now march through the keys we must work on, drawing from `batch_cursors` and `exposed`.
471 //
472 // We only keep valid cursors (those with more data) in `batch_cursors`, and so its length
473 // indicates whether more data remain. We move through `exposed` using (index) `exposed_position`.
474 // There could perhaps be a less provocative variable name.
475 let mut exposed_position = 0;
476 while batch_cursor.key_valid(batch_storage) || exposed_position < exposed.len() {
477
478 use std::borrow::Borrow;
479 use crate::trace::cursor::MyTrait;
480
481 // Determine the next key we will work on; could be synthetic, could be from a batch.
482 let key1 = exposed.get(exposed_position).map(|x| <_ as MyTrait>::borrow_as(&x.0));
483 let key2 = batch_cursor.get_key(batch_storage);
484 let key = match (key1, key2) {
485 (Some(key1), Some(key2)) => ::std::cmp::min(key1, key2),
486 (Some(key1), None) => key1,
487 (None, Some(key2)) => key2,
488 (None, None) => unreachable!(),
489 };
490
491 // `interesting_times` contains those times between `lower_issued` and `upper_limit`
492 // that we need to re-consider. We now populate it, but perhaps this should be left
493 // to the per-key computation, which may be able to avoid examining the times of some
494 // values (for example, in the case of min/max/topk).
495 interesting_times.clear();
496
497 // Populate `interesting_times` with synthetic interesting times (below `upper_limit`) for this key.
498 while exposed.get(exposed_position).map(|x| x.0.borrow()).map(|k| key.equals(k)).unwrap_or(false) {
499 interesting_times.push(exposed[exposed_position].1.clone());
500 exposed_position += 1;
501 }
502
503 // tidy up times, removing redundancy.
504 sort_dedup(&mut interesting_times);
505
506 // do the per-key computation.
507 let _counters = thinker.compute(
508 key,
509 (&mut source_cursor, source_storage),
510 (&mut output_cursor, output_storage),
511 (&mut batch_cursor, batch_storage),
512 &mut interesting_times,
513 &mut logic,
514 &upper_limit,
515 &mut buffers[..],
516 &mut new_interesting_times,
517 );
518
519 if batch_cursor.get_key(batch_storage) == Some(key) {
520 batch_cursor.step_key(batch_storage);
521 }
522
523 // Record future warnings about interesting times (and assert they should be "future").
524 for time in new_interesting_times.drain(..) {
525 debug_assert!(upper_limit.less_equal(&time));
526 interesting.push((key.into_owned(), time));
527 }
528
529 // Sort each buffer by value and move into the corresponding builder.
530 // TODO: This makes assumptions about at least one of (i) the stability of `sort_by`,
531 // (ii) that the buffers are time-ordered, and (iii) that the builders accept
532 // arbitrarily ordered times.
533 for index in 0 .. buffers.len() {
534 buffers[index].1.sort_by(|x,y| x.0.cmp(&y.0));
535 for (val, time, diff) in buffers[index].1.drain(..) {
536 builders[index].push(((key.into_owned(), val), time, diff));
537 }
538 }
539 }
540
541 // We start sealing output batches from the lower limit (previous upper limit).
542 // In principle, we could update `lower_limit` itself, and it should arrive at
543 // `upper_limit` by the end of the process.
544 output_lower.clear();
545 output_lower.extend(lower_limit.borrow().iter().cloned());
546
547 // build and ship each batch (because only one capability per message).
548 for (index, builder) in builders.drain(..).enumerate() {
549
550 // Form the upper limit of the next batch, which includes all times greater
551 // than the input batch, or the capabilities from i + 1 onward.
552 output_upper.clear();
553 output_upper.extend(upper_limit.borrow().iter().cloned());
554 for capability in &capabilities[index + 1 ..] {
555 output_upper.insert(capability.time().clone());
556 }
557
558 if output_upper.borrow() != output_lower.borrow() {
559
560 let batch = builder.done(output_lower.clone(), output_upper.clone(), Antichain::from_elem(G::Timestamp::minimum()));
561
562 // ship batch to the output, and commit to the output trace.
563 output.session(&capabilities[index]).give(batch.clone());
564 output_writer.insert(batch, Some(capabilities[index].time().clone()));
565
566 output_lower.clear();
567 output_lower.extend(output_upper.borrow().iter().cloned());
568 }
569 }
570
571 // This should be true, as the final iteration introduces no capabilities, and
572 // uses exactly `upper_limit` to determine the upper bound. Good to check though.
573 assert!(output_upper.borrow() == upper_limit.borrow());
574
575 // Determine the frontier of our interesting times.
576 let mut frontier = Antichain::<G::Timestamp>::new();
577 for (_, time) in &interesting {
578 frontier.insert(time.clone());
579 }
580
581 // Update `capabilities` to reflect interesting pairs described by `frontier`.
582 let mut new_capabilities = Vec::new();
583 for time in frontier.borrow().iter() {
584 if let Some(cap) = capabilities.iter().find(|c| c.time().less_equal(time)) {
585 new_capabilities.push(cap.delayed(time));
586 }
587 else {
588 println!("{}:\tfailed to find capability less than new frontier time:", id);
589 println!("{}:\t time: {:?}", id, time);
590 println!("{}:\t caps: {:?}", id, capabilities);
591 println!("{}:\t uppr: {:?}", id, upper_limit);
592 }
593 }
594 capabilities = new_capabilities;
595
596 // ensure that observed progres is reflected in the output.
597 output_writer.seal(upper_limit.clone());
598 }
599 else {
600 output_writer.seal(upper_limit.clone());
601 }
602
603 // We only anticipate future times in advance of `upper_limit`.
604 source_trace.set_logical_compaction(upper_limit.borrow());
605 output_reader.set_logical_compaction(upper_limit.borrow());
606
607 // We will only slice the data between future batches.
608 source_trace.set_physical_compaction(upper_limit.borrow());
609 output_reader.set_physical_compaction(upper_limit.borrow());
610 }
611
612 // Exert trace maintenance if we have been so requested.
613 output_writer.exert();
614 }
615 }
616 )
617 };
618
619 Arranged { stream, trace: result_trace.unwrap() }
620}
621
622
623#[inline(never)]
624fn sort_dedup<T: Ord>(list: &mut Vec<T>) {
625 list.dedup();
626 list.sort();
627 list.dedup();
628}
629
630trait PerKeyCompute<'a, C1, C2, C3>
631where
632 C1: Cursor,
633 C2: Cursor<Key<'a> = C1::Key<'a>, Time = C1::Time>,
634 C3: Cursor<Key<'a> = C1::Key<'a>, Val<'a> = C1::Val<'a>, Time = C1::Time, Diff = C1::Diff>,
635 C2::ValOwned: Ord + Clone,
636 C1::Time: Lattice+Ord+Clone,
637 C1::Diff: Semigroup,
638 C2::Diff: Semigroup,
639{
640 fn new() -> Self;
641 fn compute<L>(
642 &mut self,
643 key: C1::Key<'a>,
644 source_cursor: (&mut C1, &'a C1::Storage),
645 output_cursor: (&mut C2, &'a C2::Storage),
646 batch_cursor: (&mut C3, &'a C3::Storage),
647 times: &mut Vec<C1::Time>,
648 logic: &mut L,
649 upper_limit: &Antichain<C1::Time>,
650 outputs: &mut [(C2::Time, Vec<(C2::ValOwned, C2::Time, C2::Diff)>)],
651 new_interesting: &mut Vec<C1::Time>) -> (usize, usize)
652 where
653 L: FnMut(
654 C1::Key<'a>,
655 &[(C1::Val<'a>, C1::Diff)],
656 &mut Vec<(C2::ValOwned, C2::Diff)>,
657 &mut Vec<(C2::ValOwned, C2::Diff)>,
658 );
659}
660
661
662/// Implementation based on replaying historical and new updates together.
663mod history_replay {
664
665 use crate::difference::Semigroup;
666 use crate::lattice::Lattice;
667 use crate::trace::Cursor;
668 use crate::operators::ValueHistory;
669 use timely::progress::Antichain;
670
671 use timely::PartialOrder;
672
673 use super::{PerKeyCompute, sort_dedup};
674
675 /// The `HistoryReplayer` is a compute strategy based on moving through existing inputs, interesting times, etc in
676 /// time order, maintaining consolidated representations of updates with respect to future interesting times.
677 pub struct HistoryReplayer<'a, C1, C2, C3>//V1, V2, T, R1, R2>
678 where
679 C1: Cursor,
680 C2: Cursor<Key<'a> = C1::Key<'a>, Time = C1::Time>,
681 C3: Cursor<Key<'a> = C1::Key<'a>, Val<'a> = C1::Val<'a>, Time = C1::Time, Diff = C1::Diff>,
682 C2::ValOwned: Ord + Clone,
683 C1::Time: Lattice+Ord+Clone,
684 C1::Diff: Semigroup,
685 C2::Diff: Semigroup,
686 {
687 input_history: ValueHistory<'a, C1>,
688 output_history: ValueHistory<'a, C2>,
689 batch_history: ValueHistory<'a, C3>,
690 input_buffer: Vec<(C1::Val<'a>, C1::Diff)>,
691 output_buffer: Vec<(C2::ValOwned, C2::Diff)>,
692 update_buffer: Vec<(C2::ValOwned, C2::Diff)>,
693 output_produced: Vec<((C2::ValOwned, C2::Time), C2::Diff)>,
694 synth_times: Vec<C1::Time>,
695 meets: Vec<C1::Time>,
696 times_current: Vec<C1::Time>,
697 temporary: Vec<C1::Time>,
698 }
699
700 impl<'a, C1, C2, C3> PerKeyCompute<'a, C1, C2, C3> for HistoryReplayer<'a, C1, C2, C3>
701 where
702 C1: Cursor,
703 C2: Cursor<Key<'a> = C1::Key<'a>, Time = C1::Time>,
704 C3: Cursor<Key<'a> = C1::Key<'a>, Val<'a> = C1::Val<'a>, Time = C1::Time, Diff = C1::Diff>,
705 C2::ValOwned: Ord + Clone,
706 C1::Time: Lattice+Ord+Clone,
707 C1::Diff: Semigroup,
708 C2::Diff: Semigroup,
709 {
710 fn new() -> Self {
711 HistoryReplayer {
712 input_history: ValueHistory::new(),
713 output_history: ValueHistory::new(),
714 batch_history: ValueHistory::new(),
715 input_buffer: Vec::new(),
716 output_buffer: Vec::new(),
717 update_buffer: Vec::new(),
718 output_produced: Vec::new(),
719 synth_times: Vec::new(),
720 meets: Vec::new(),
721 times_current: Vec::new(),
722 temporary: Vec::new(),
723 }
724 }
725 #[inline(never)]
726 fn compute<L>(
727 &mut self,
728 key: C1::Key<'a>,
729 (source_cursor, source_storage): (&mut C1, &'a C1::Storage),
730 (output_cursor, output_storage): (&mut C2, &'a C2::Storage),
731 (batch_cursor, batch_storage): (&mut C3, &'a C3::Storage),
732 times: &mut Vec<C1::Time>,
733 logic: &mut L,
734 upper_limit: &Antichain<C1::Time>,
735 outputs: &mut [(C2::Time, Vec<(C2::ValOwned, C2::Time, C2::Diff)>)],
736 new_interesting: &mut Vec<C1::Time>) -> (usize, usize)
737 where
738 L: FnMut(
739 C1::Key<'a>,
740 &[(C1::Val<'a>, C1::Diff)],
741 &mut Vec<(C2::ValOwned, C2::Diff)>,
742 &mut Vec<(C2::ValOwned, C2::Diff)>,
743 )
744 {
745
746 // The work we need to perform is at times defined principally by the contents of `batch_cursor`
747 // and `times`, respectively "new work we just received" and "old times we were warned about".
748 //
749 // Our first step is to identify these times, so that we can use them to restrict the amount of
750 // information we need to recover from `input` and `output`; as all times of interest will have
751 // some time from `batch_cursor` or `times`, we can compute their meet and advance all other
752 // loaded times by performing the lattice `join` with this value.
753
754 // Load the batch contents.
755 let mut batch_replay = self.batch_history.replay_key(batch_cursor, batch_storage, key, |time| time.clone());
756
757 // We determine the meet of times we must reconsider (those from `batch` and `times`). This meet
758 // can be used to advance other historical times, which may consolidate their representation. As
759 // a first step, we determine the meets of each *suffix* of `times`, which we will use as we play
760 // history forward.
761
762 self.meets.clear();
763 self.meets.extend(times.iter().cloned());
764 for index in (1 .. self.meets.len()).rev() {
765 self.meets[index-1] = self.meets[index-1].meet(&self.meets[index]);
766 }
767
768 // Determine the meet of times in `batch` and `times`.
769 let mut meet = None;
770 update_meet(&mut meet, self.meets.get(0));
771 update_meet(&mut meet, batch_replay.meet());
772 // if let Some(time) = self.meets.get(0) {
773 // meet = match meet {
774 // None => Some(self.meets[0].clone()),
775 // Some(x) => Some(x.meet(&self.meets[0])),
776 // };
777 // }
778 // if let Some(time) = batch_replay.meet() {
779 // meet = match meet {
780 // None => Some(time.clone()),
781 // Some(x) => Some(x.meet(&time)),
782 // };
783 // }
784
785 // Having determined the meet, we can load the input and output histories, where we
786 // advance all times by joining them with `meet`. The resulting times are more compact
787 // and guaranteed to accumulate identically for times greater or equal to `meet`.
788
789 // Load the input and output histories.
790 let mut input_replay = if let Some(meet) = meet.as_ref() {
791 self.input_history.replay_key(source_cursor, source_storage, key, |time| time.join(meet))
792 }
793 else {
794 self.input_history.replay_key(source_cursor, source_storage, key, |time| time.clone())
795 };
796 let mut output_replay = if let Some(meet) = meet.as_ref() {
797 self.output_history.replay_key(output_cursor, output_storage, key, |time| time.join(meet))
798 }
799 else {
800 self.output_history.replay_key(output_cursor, output_storage, key, |time| time.clone())
801 };
802
803 self.synth_times.clear();
804 self.times_current.clear();
805 self.output_produced.clear();
806
807 // The frontier of times we may still consider.
808 // Derived from frontiers of our update histories, supplied times, and synthetic times.
809
810 let mut times_slice = ×[..];
811 let mut meets_slice = &self.meets[..];
812
813 let mut compute_counter = 0;
814 let mut output_counter = 0;
815
816 // We have candidate times from `batch` and `times`, as well as times identified by either
817 // `input` or `output`. Finally, we may have synthetic times produced as the join of times
818 // we consider in the course of evaluation. As long as any of these times exist, we need to
819 // keep examining times.
820 while let Some(next_time) = [ batch_replay.time(),
821 times_slice.first(),
822 input_replay.time(),
823 output_replay.time(),
824 self.synth_times.last(),
825 ].iter().cloned().flatten().min().cloned() {
826
827 // Advance input and output history replayers. This marks applicable updates as active.
828 input_replay.step_while_time_is(&next_time);
829 output_replay.step_while_time_is(&next_time);
830
831 // One of our goals is to determine if `next_time` is "interesting", meaning whether we
832 // have any evidence that we should re-evaluate the user logic at this time. For a time
833 // to be "interesting" it would need to be the join of times that include either a time
834 // from `batch`, `times`, or `synth`. Neither `input` nor `output` times are sufficient.
835
836 // Advance batch history, and capture whether an update exists at `next_time`.
837 let mut interesting = batch_replay.step_while_time_is(&next_time);
838 if interesting {
839 if let Some(meet) = meet.as_ref() {
840 batch_replay.advance_buffer_by(meet);
841 }
842 }
843
844 // advance both `synth_times` and `times_slice`, marking this time interesting if in either.
845 while self.synth_times.last() == Some(&next_time) {
846 // We don't know enough about `next_time` to avoid putting it in to `times_current`.
847 // TODO: If we knew that the time derived from a canceled batch update, we could remove the time.
848 self.times_current.push(self.synth_times.pop().expect("failed to pop from synth_times")); // <-- TODO: this could be a min-heap.
849 interesting = true;
850 }
851 while times_slice.first() == Some(&next_time) {
852 // We know nothing about why we were warned about `next_time`, and must include it to scare future times.
853 self.times_current.push(times_slice[0].clone());
854 times_slice = ×_slice[1..];
855 meets_slice = &meets_slice[1..];
856 interesting = true;
857 }
858
859 // Times could also be interesting if an interesting time is less than them, as they would join
860 // and become the time itself. They may not equal the current time because whatever frontier we
861 // are tracking may not have advanced far enough.
862 // TODO: `batch_history` may or may not be super compact at this point, and so this check might
863 // yield false positives if not sufficiently compact. Maybe we should into this and see.
864 interesting = interesting || batch_replay.buffer().iter().any(|&((_, ref t),_)| t.less_equal(&next_time));
865 interesting = interesting || self.times_current.iter().any(|t| t.less_equal(&next_time));
866
867 // We should only process times that are not in advance of `upper_limit`.
868 //
869 // We have no particular guarantee that known times will not be in advance of `upper_limit`.
870 // We may have the guarantee that synthetic times will not be, as we test against the limit
871 // before we add the time to `synth_times`.
872 if !upper_limit.less_equal(&next_time) {
873
874 // We should re-evaluate the computation if this is an interesting time.
875 // If the time is uninteresting (and our logic is sound) it is not possible for there to be
876 // output produced. This sounds like a good test to have for debug builds!
877 if interesting {
878
879 compute_counter += 1;
880
881 // Assemble the input collection at `next_time`. (`self.input_buffer` cleared just after use).
882 debug_assert!(self.input_buffer.is_empty());
883 meet.as_ref().map(|meet| input_replay.advance_buffer_by(meet));
884 for &((value, ref time), ref diff) in input_replay.buffer().iter() {
885 if time.less_equal(&next_time) {
886 self.input_buffer.push((value, diff.clone()));
887 }
888 else {
889 self.temporary.push(next_time.join(time));
890 }
891 }
892 for &((value, ref time), ref diff) in batch_replay.buffer().iter() {
893 if time.less_equal(&next_time) {
894 self.input_buffer.push((value, diff.clone()));
895 }
896 else {
897 self.temporary.push(next_time.join(time));
898 }
899 }
900 crate::consolidation::consolidate(&mut self.input_buffer);
901
902 meet.as_ref().map(|meet| output_replay.advance_buffer_by(meet));
903 for &((value, ref time), ref diff) in output_replay.buffer().iter() {
904 if time.less_equal(&next_time) {
905 use crate::trace::cursor::MyTrait;
906 self.output_buffer.push((<_ as MyTrait>::into_owned(value), diff.clone()));
907 }
908 else {
909 self.temporary.push(next_time.join(time));
910 }
911 }
912 for &((ref value, ref time), ref diff) in self.output_produced.iter() {
913 if time.less_equal(&next_time) {
914 self.output_buffer.push(((*value).to_owned(), diff.clone()));
915 }
916 else {
917 self.temporary.push(next_time.join(time));
918 }
919 }
920 crate::consolidation::consolidate(&mut self.output_buffer);
921
922 // Apply user logic if non-empty input and see what happens!
923 if !self.input_buffer.is_empty() || !self.output_buffer.is_empty() {
924 logic(key, &self.input_buffer[..], &mut self.output_buffer, &mut self.update_buffer);
925 self.input_buffer.clear();
926 self.output_buffer.clear();
927 }
928
929 // output_replay.advance_buffer_by(&meet);
930 // for &((ref value, ref time), diff) in output_replay.buffer().iter() {
931 // if time.less_equal(&next_time) {
932 // self.output_buffer.push(((*value).clone(), -diff));
933 // }
934 // else {
935 // self.temporary.push(next_time.join(time));
936 // }
937 // }
938 // for &((ref value, ref time), diff) in self.output_produced.iter() {
939 // if time.less_equal(&next_time) {
940 // self.output_buffer.push(((*value).clone(), -diff));
941 // }
942 // else {
943 // self.temporary.push(next_time.join(&time));
944 // }
945 // }
946
947 // Having subtracted output updates from user output, consolidate the results to determine
948 // if there is anything worth reporting. Note: this also orders the results by value, so
949 // that could make the above merging plan even easier.
950 crate::consolidation::consolidate(&mut self.update_buffer);
951
952 // Stash produced updates into both capability-indexed buffers and `output_produced`.
953 // The two locations are important, in that we will compact `output_produced` as we move
954 // through times, but we cannot compact the output buffers because we need their actual
955 // times.
956 if !self.update_buffer.is_empty() {
957
958 output_counter += 1;
959
960 // We *should* be able to find a capability for `next_time`. Any thing else would
961 // indicate a logical error somewhere along the way; either we release a capability
962 // we should have kept, or we have computed the output incorrectly (or both!)
963 let idx = outputs.iter().rev().position(|(time, _)| time.less_equal(&next_time));
964 let idx = outputs.len() - idx.expect("failed to find index") - 1;
965 for (val, diff) in self.update_buffer.drain(..) {
966 self.output_produced.push(((val.clone(), next_time.clone()), diff.clone()));
967 outputs[idx].1.push((val, next_time.clone(), diff));
968 }
969
970 // Advance times in `self.output_produced` and consolidate the representation.
971 // NOTE: We only do this when we add records; it could be that there are situations
972 // where we want to consolidate even without changes (because an initially
973 // large collection can now be collapsed).
974 if let Some(meet) = meet.as_ref() {
975 for entry in &mut self.output_produced {
976 (entry.0).1 = (entry.0).1.join(meet);
977 }
978 }
979 crate::consolidation::consolidate(&mut self.output_produced);
980 }
981 }
982
983 // Determine synthetic interesting times.
984 //
985 // Synthetic interesting times are produced differently for interesting and uninteresting
986 // times. An uninteresting time must join with an interesting time to become interesting,
987 // which means joins with `self.batch_history` and `self.times_current`. I think we can
988 // skip `self.synth_times` as we haven't gotten to them yet, but we will and they will be
989 // joined against everything.
990
991 // Any time, even uninteresting times, must be joined with the current accumulation of
992 // batch times as well as the current accumulation of `times_current`.
993 for &((_, ref time), _) in batch_replay.buffer().iter() {
994 if !time.less_equal(&next_time) {
995 self.temporary.push(time.join(&next_time));
996 }
997 }
998 for time in self.times_current.iter() {
999 if !time.less_equal(&next_time) {
1000 self.temporary.push(time.join(&next_time));
1001 }
1002 }
1003
1004 sort_dedup(&mut self.temporary);
1005
1006 // Introduce synthetic times, and re-organize if we add any.
1007 let synth_len = self.synth_times.len();
1008 for time in self.temporary.drain(..) {
1009 // We can either service `join` now, or must delay for the future.
1010 if upper_limit.less_equal(&time) {
1011 debug_assert!(outputs.iter().any(|(t,_)| t.less_equal(&time)));
1012 new_interesting.push(time);
1013 }
1014 else {
1015 self.synth_times.push(time);
1016 }
1017 }
1018 if self.synth_times.len() > synth_len {
1019 self.synth_times.sort_by(|x,y| y.cmp(x));
1020 self.synth_times.dedup();
1021 }
1022 }
1023 else if interesting {
1024 // We cannot process `next_time` now, and must delay it.
1025 //
1026 // I think we are probably only here because of an uninteresting time declared interesting,
1027 // as initial interesting times are filtered to be in interval, and synthetic times are also
1028 // filtered before introducing them to `self.synth_times`.
1029 new_interesting.push(next_time.clone());
1030 debug_assert!(outputs.iter().any(|(t,_)| t.less_equal(&next_time)))
1031 }
1032
1033
1034 // Update `meet` to track the meet of each source of times.
1035 meet = None;//T::maximum();
1036 update_meet(&mut meet, batch_replay.meet());
1037 update_meet(&mut meet, input_replay.meet());
1038 update_meet(&mut meet, output_replay.meet());
1039 for time in self.synth_times.iter() { update_meet(&mut meet, Some(time)); }
1040 // if let Some(time) = batch_replay.meet() { meet = meet.meet(time); }
1041 // if let Some(time) = input_replay.meet() { meet = meet.meet(time); }
1042 // if let Some(time) = output_replay.meet() { meet = meet.meet(time); }
1043 // for time in self.synth_times.iter() { meet = meet.meet(time); }
1044 update_meet(&mut meet, meets_slice.first());
1045 // if let Some(time) = meets_slice.first() { meet = meet.meet(time); }
1046
1047 // Update `times_current` by the frontier.
1048 if let Some(meet) = meet.as_ref() {
1049 for time in self.times_current.iter_mut() {
1050 *time = time.join(meet);
1051 }
1052 }
1053
1054 sort_dedup(&mut self.times_current);
1055 }
1056
1057 // Normalize the representation of `new_interesting`, deduplicating and ordering.
1058 sort_dedup(new_interesting);
1059
1060 (compute_counter, output_counter)
1061 }
1062 }
1063
1064 /// Updates an optional meet by an optional time.
1065 fn update_meet<T: Lattice+Clone>(meet: &mut Option<T>, other: Option<&T>) {
1066 if let Some(time) = other {
1067 if let Some(meet) = meet.as_mut() {
1068 *meet = meet.meet(time);
1069 }
1070 if meet.is_none() {
1071 *meet = Some(time.clone());
1072 }
1073 }
1074 }
1075}