differential_dataflow/operators/join.rs
1//! Match pairs of records based on a key.
2//!
3//! The various `join` implementations require that the units of each collection can be multiplied, and that
4//! the multiplication distributes over addition. That is, we will repeatedly evaluate (a + b) * c as (a * c)
5//! + (b * c), and if this is not equal to the former term, little is known about the actual output.
6use std::cmp::Ordering;
7
8use timely::order::PartialOrder;
9use timely::progress::Timestamp;
10use timely::dataflow::Scope;
11use timely::dataflow::operators::generic::{Operator, OutputHandle};
12use timely::dataflow::channels::pact::Pipeline;
13use timely::dataflow::operators::Capability;
14use timely::dataflow::channels::pushers::tee::Tee;
15
16use crate::hashable::Hashable;
17use crate::{Data, ExchangeData, Collection, AsCollection};
18use crate::difference::{Semigroup, Abelian, Multiply};
19use crate::lattice::Lattice;
20use crate::operators::arrange::{Arranged, ArrangeByKey, ArrangeBySelf};
21use crate::trace::{BatchReader, Cursor};
22use crate::operators::ValueHistory;
23
24use crate::trace::TraceReader;
25
26/// Join implementations for `(key,val)` data.
27pub trait Join<G: Scope, K: Data, V: Data, R: Semigroup> {
28
29 /// Matches pairs `(key,val1)` and `(key,val2)` based on `key` and yields pairs `(key, (val1, val2))`.
30 ///
31 /// The [`join_map`](Join::join_map) method may be more convenient for non-trivial processing pipelines.
32 ///
33 /// # Examples
34 ///
35 /// ```
36 /// use differential_dataflow::input::Input;
37 /// use differential_dataflow::operators::Join;
38 ///
39 /// ::timely::example(|scope| {
40 ///
41 /// let x = scope.new_collection_from(vec![(0, 1), (1, 3)]).1;
42 /// let y = scope.new_collection_from(vec![(0, 'a'), (1, 'b')]).1;
43 /// let z = scope.new_collection_from(vec![(0, (1, 'a')), (1, (3, 'b'))]).1;
44 ///
45 /// x.join(&y)
46 /// .assert_eq(&z);
47 /// });
48 /// ```
49 fn join<V2, R2>(&self, other: &Collection<G, (K,V2), R2>) -> Collection<G, (K,(V,V2)), <R as Multiply<R2>>::Output>
50 where
51 K: ExchangeData,
52 V2: ExchangeData,
53 R2: ExchangeData+Semigroup,
54 R: Multiply<R2>,
55 <R as Multiply<R2>>::Output: Semigroup
56 {
57 self.join_map(other, |k,v,v2| (k.clone(),(v.clone(),v2.clone())))
58 }
59
60 /// Matches pairs `(key,val1)` and `(key,val2)` based on `key` and then applies a function.
61 ///
62 /// # Examples
63 ///
64 /// ```
65 /// use differential_dataflow::input::Input;
66 /// use differential_dataflow::operators::Join;
67 ///
68 /// ::timely::example(|scope| {
69 ///
70 /// let x = scope.new_collection_from(vec![(0, 1), (1, 3)]).1;
71 /// let y = scope.new_collection_from(vec![(0, 'a'), (1, 'b')]).1;
72 /// let z = scope.new_collection_from(vec![(1, 'a'), (3, 'b')]).1;
73 ///
74 /// x.join_map(&y, |_key, &a, &b| (a,b))
75 /// .assert_eq(&z);
76 /// });
77 /// ```
78 fn join_map<V2, R2, D, L>(&self, other: &Collection<G, (K,V2), R2>, logic: L) -> Collection<G, D, <R as Multiply<R2>>::Output>
79 where K: ExchangeData, V2: ExchangeData, R2: ExchangeData+Semigroup, R: Multiply<R2>, <R as Multiply<R2>>::Output: Semigroup, D: Data, L: FnMut(&K, &V, &V2)->D+'static;
80
81 /// Matches pairs `(key, val)` and `key` based on `key`, producing the former with frequencies multiplied.
82 ///
83 /// When the second collection contains frequencies that are either zero or one this is the more traditional
84 /// relational semijoin. When the second collection may contain multiplicities, this operation may scale up
85 /// the counts of the records in the first input.
86 ///
87 /// # Examples
88 ///
89 /// ```
90 /// use differential_dataflow::input::Input;
91 /// use differential_dataflow::operators::Join;
92 ///
93 /// ::timely::example(|scope| {
94 ///
95 /// let x = scope.new_collection_from(vec![(0, 1), (1, 3)]).1;
96 /// let y = scope.new_collection_from(vec![0, 2]).1;
97 /// let z = scope.new_collection_from(vec![(0, 1)]).1;
98 ///
99 /// x.semijoin(&y)
100 /// .assert_eq(&z);
101 /// });
102 /// ```
103 fn semijoin<R2>(&self, other: &Collection<G, K, R2>) -> Collection<G, (K, V), <R as Multiply<R2>>::Output>
104 where K: ExchangeData, R2: ExchangeData+Semigroup, R: Multiply<R2>, <R as Multiply<R2>>::Output: Semigroup;
105
106 /// Subtracts the semijoin with `other` from `self`.
107 ///
108 /// In the case that `other` has multiplicities zero or one this results
109 /// in a relational antijoin, in which we discard input records whose key
110 /// is present in `other`. If the multiplicities could be other than zero
111 /// or one, the semantic interpretation of this operator is less clear.
112 ///
113 /// In almost all cases, you should ensure that `other` has multiplicities
114 /// that are zero or one, perhaps by using the `distinct` operator.
115 ///
116 /// # Examples
117 ///
118 /// ```
119 /// use differential_dataflow::input::Input;
120 /// use differential_dataflow::operators::Join;
121 ///
122 /// ::timely::example(|scope| {
123 ///
124 /// let x = scope.new_collection_from(vec![(0, 1), (1, 3)]).1;
125 /// let y = scope.new_collection_from(vec![0, 2]).1;
126 /// let z = scope.new_collection_from(vec![(1, 3)]).1;
127 ///
128 /// x.antijoin(&y)
129 /// .assert_eq(&z);
130 /// });
131 /// ```
132 fn antijoin<R2>(&self, other: &Collection<G, K, R2>) -> Collection<G, (K, V), R>
133 where K: ExchangeData, R2: ExchangeData+Semigroup, R: Multiply<R2, Output = R>, R: Abelian;
134}
135
136impl<G, K, V, R> Join<G, K, V, R> for Collection<G, (K, V), R>
137where
138 G: Scope,
139 K: ExchangeData+Hashable,
140 V: ExchangeData,
141 R: ExchangeData+Semigroup,
142 G::Timestamp: Lattice+Ord,
143{
144 fn join_map<V2: ExchangeData, R2: ExchangeData+Semigroup, D: Data, L>(&self, other: &Collection<G, (K, V2), R2>, mut logic: L) -> Collection<G, D, <R as Multiply<R2>>::Output>
145 where R: Multiply<R2>, <R as Multiply<R2>>::Output: Semigroup, L: FnMut(&K, &V, &V2)->D+'static {
146 let arranged1 = self.arrange_by_key();
147 let arranged2 = other.arrange_by_key();
148 arranged1.join_core(&arranged2, move |k,v1,v2| Some(logic(k,v1,v2)))
149 }
150
151 fn semijoin<R2: ExchangeData+Semigroup>(&self, other: &Collection<G, K, R2>) -> Collection<G, (K, V), <R as Multiply<R2>>::Output>
152 where R: Multiply<R2>, <R as Multiply<R2>>::Output: Semigroup {
153 let arranged1 = self.arrange_by_key();
154 let arranged2 = other.arrange_by_self();
155 arranged1.join_core(&arranged2, |k,v,_| Some((k.clone(), v.clone())))
156 }
157
158 fn antijoin<R2: ExchangeData+Semigroup>(&self, other: &Collection<G, K, R2>) -> Collection<G, (K, V), R>
159 where R: Multiply<R2, Output=R>, R: Abelian {
160 self.concat(&self.semijoin(other).negate())
161 }
162}
163
164impl<G, K, V, Tr> Join<G, K, V, Tr::Diff> for Arranged<G, Tr>
165where
166 G: Scope,
167 G::Timestamp: Lattice+Ord,
168 Tr: for<'a> TraceReader<Time=G::Timestamp, Key<'a> = &'a K, Val<'a> = &'a V>+Clone+'static,
169 K: ExchangeData+Hashable,
170 V: Data + 'static,
171 Tr::Diff: Semigroup,
172{
173 fn join_map<V2: ExchangeData, R2: ExchangeData+Semigroup, D: Data, L>(&self, other: &Collection<G, (K, V2), R2>, mut logic: L) -> Collection<G, D, <Tr::Diff as Multiply<R2>>::Output>
174 where
175 Tr::Diff: Multiply<R2>,
176 <Tr::Diff as Multiply<R2>>::Output: Semigroup,
177 L: for<'a> FnMut(Tr::Key<'a>, Tr::Val<'a>, &V2)->D+'static,
178 {
179 let arranged2 = other.arrange_by_key();
180 self.join_core(&arranged2, move |k,v1,v2| Some(logic(k,v1,v2)))
181 }
182
183 fn semijoin<R2: ExchangeData+Semigroup>(&self, other: &Collection<G, K, R2>) -> Collection<G, (K, V), <Tr::Diff as Multiply<R2>>::Output>
184 where Tr::Diff: Multiply<R2>, <Tr::Diff as Multiply<R2>>::Output: Semigroup {
185 let arranged2 = other.arrange_by_self();
186 self.join_core(&arranged2, |k,v,_| Some((k.clone(), v.clone())))
187 }
188
189 fn antijoin<R2: ExchangeData+Semigroup>(&self, other: &Collection<G, K, R2>) -> Collection<G, (K, V), Tr::Diff>
190 where Tr::Diff: Multiply<R2, Output=Tr::Diff>, Tr::Diff: Abelian {
191 self.as_collection(|k,v| (k.clone(), v.clone()))
192 .concat(&self.semijoin(other).negate())
193 }
194}
195
196/// Matches the elements of two arranged traces.
197///
198/// This method is used by the various `join` implementations, but it can also be used
199/// directly in the event that one has a handle to an `Arranged<G,T>`, perhaps because
200/// the arrangement is available for re-use, or from the output of a `reduce` operator.
201pub trait JoinCore<G: Scope, K: 'static + ?Sized, V: 'static + ?Sized, R: Semigroup> where G::Timestamp: Lattice+Ord {
202
203 /// Joins two arranged collections with the same key type.
204 ///
205 /// Each matching pair of records `(key, val1)` and `(key, val2)` are subjected to the `result` function,
206 /// which produces something implementing `IntoIterator`, where the output collection will have an entry for
207 /// every value returned by the iterator.
208 ///
209 /// This trait is implemented for arrangements (`Arranged<G, T>`) rather than collections. The `Join` trait
210 /// contains the implementations for collections.
211 ///
212 /// # Examples
213 ///
214 /// ```
215 /// use differential_dataflow::input::Input;
216 /// use differential_dataflow::operators::arrange::ArrangeByKey;
217 /// use differential_dataflow::operators::join::JoinCore;
218 /// use differential_dataflow::trace::Trace;
219 ///
220 /// ::timely::example(|scope| {
221 ///
222 /// let x = scope.new_collection_from(vec![(0u32, 1), (1, 3)]).1
223 /// .arrange_by_key();
224 /// let y = scope.new_collection_from(vec![(0, 'a'), (1, 'b')]).1
225 /// .arrange_by_key();
226 ///
227 /// let z = scope.new_collection_from(vec![(1, 'a'), (3, 'b')]).1;
228 ///
229 /// x.join_core(&y, |_key, &a, &b| Some((a, b)))
230 /// .assert_eq(&z);
231 /// });
232 /// ```
233 fn join_core<Tr2,I,L> (&self, stream2: &Arranged<G,Tr2>, result: L) -> Collection<G,I::Item,<R as Multiply<Tr2::Diff>>::Output>
234 where
235 Tr2: for<'a> TraceReader<Key<'a>=&'a K, Time=G::Timestamp>+Clone+'static,
236 Tr2::Diff: Semigroup,
237 R: Multiply<Tr2::Diff>,
238 <R as Multiply<Tr2::Diff>>::Output: Semigroup,
239 I: IntoIterator,
240 I::Item: Data,
241 L: FnMut(&K,&V,Tr2::Val<'_>)->I+'static,
242 ;
243
244 /// An unsafe variant of `join_core` where the `result` closure takes additional arguments for `time` and
245 /// `diff` as input and returns an iterator over `(data, time, diff)` triplets. This allows for more
246 /// flexibility, but is more error-prone.
247 ///
248 /// Each matching pair of records `(key, val1)` and `(key, val2)` are subjected to the `result` function,
249 /// which produces something implementing `IntoIterator`, where the output collection will have an entry
250 /// for every value returned by the iterator.
251 ///
252 /// This trait is implemented for arrangements (`Arranged<G, T>`) rather than collections. The `Join` trait
253 /// contains the implementations for collections.
254 ///
255 /// # Examples
256 ///
257 /// ```
258 /// use differential_dataflow::input::Input;
259 /// use differential_dataflow::operators::arrange::ArrangeByKey;
260 /// use differential_dataflow::operators::join::JoinCore;
261 /// use differential_dataflow::trace::Trace;
262 ///
263 /// ::timely::example(|scope| {
264 ///
265 /// let x = scope.new_collection_from(vec![(0u32, 1), (1, 3)]).1
266 /// .arrange_by_key();
267 /// let y = scope.new_collection_from(vec![(0, 'a'), (1, 'b')]).1
268 /// .arrange_by_key();
269 ///
270 /// let z = scope.new_collection_from(vec![(1, 'a'), (3, 'b'), (3, 'b'), (3, 'b')]).1;
271 ///
272 /// // Returned values have weight `a`
273 /// x.join_core_internal_unsafe(&y, |_key, &a, &b, &t, &r1, &r2| Some(((a, b), t.clone(), a)))
274 /// .assert_eq(&z);
275 /// });
276 /// ```
277 fn join_core_internal_unsafe<Tr2,I,L,D,ROut> (&self, stream2: &Arranged<G,Tr2>, result: L) -> Collection<G,D,ROut>
278 where
279 Tr2: for<'a> TraceReader<Key<'a>=&'a K, Time=G::Timestamp>+Clone+'static,
280 Tr2::Diff: Semigroup,
281 D: Data,
282 ROut: Semigroup,
283 I: IntoIterator<Item=(D, G::Timestamp, ROut)>,
284 L: for<'a> FnMut(&K,&V,Tr2::Val<'_>,&G::Timestamp,&R,&Tr2::Diff)->I+'static,
285 ;
286}
287
288
289impl<G, K, V, R> JoinCore<G, K, V, R> for Collection<G, (K, V), R>
290where
291 G: Scope,
292 K: ExchangeData+Hashable,
293 V: ExchangeData,
294 R: ExchangeData+Semigroup,
295 G::Timestamp: Lattice+Ord,
296{
297 fn join_core<Tr2,I,L> (&self, stream2: &Arranged<G,Tr2>, result: L) -> Collection<G,I::Item,<R as Multiply<Tr2::Diff>>::Output>
298 where
299 Tr2: for<'a> TraceReader<Key<'a>=&'a K, Time=G::Timestamp>+Clone+'static,
300 Tr2::Diff: Semigroup,
301 R: Multiply<Tr2::Diff>,
302 <R as Multiply<Tr2::Diff>>::Output: Semigroup,
303 I: IntoIterator,
304 I::Item: Data,
305 L: FnMut(&K,&V,Tr2::Val<'_>)->I+'static,
306 {
307 self.arrange_by_key()
308 .join_core(stream2, result)
309 }
310
311 fn join_core_internal_unsafe<Tr2,I,L,D,ROut> (&self, stream2: &Arranged<G,Tr2>, result: L) -> Collection<G,D,ROut>
312 where
313 Tr2: for<'a> TraceReader<Key<'a>=&'a K, Time=G::Timestamp>+Clone+'static,
314 Tr2::Diff: Semigroup,
315 I: IntoIterator<Item=(D, G::Timestamp, ROut)>,
316 L: FnMut(&K,&V,Tr2::Val<'_>,&G::Timestamp,&R,&Tr2::Diff)->I+'static,
317 D: Data,
318 ROut: Semigroup,
319 {
320 self.arrange_by_key().join_core_internal_unsafe(stream2, result)
321 }
322}
323
324/// An equijoin of two traces, sharing a common key type.
325///
326/// This method exists to provide join functionality without opinions on the specific input types, keys and values,
327/// that should be presented. The two traces here can have arbitrary key and value types, which can be unsized and
328/// even potentially unrelated to the input collection data. Importantly, the key and value types could be generic
329/// associated types (GATs) of the traces, and we would seemingly struggle to frame these types as trait arguments.
330///
331/// The "correctness" of this method depends heavily on the behavior of the supplied `result` function.
332pub fn join_traces<G, T1, T2, I,L,D,R>(arranged1: &Arranged<G,T1>, arranged2: &Arranged<G,T2>, mut result: L) -> Collection<G, D, R>
333where
334 G: Scope,
335 G::Timestamp: Lattice+Ord,
336 T1: TraceReader<Time=G::Timestamp>+Clone+'static,
337 T1::Diff: Semigroup,
338 T2: for<'a> TraceReader<Key<'a>=T1::Key<'a>, Time=G::Timestamp>+Clone+'static,
339 T2::Diff: Semigroup,
340 D: Data,
341 R: Semigroup,
342 I: IntoIterator<Item=(D, G::Timestamp, R)>,
343 L: FnMut(T1::Key<'_>,T1::Val<'_>,T2::Val<'_>,&G::Timestamp,&T1::Diff,&T2::Diff)->I+'static,
344{
345 // Rename traces for symmetry from here on out.
346 let mut trace1 = arranged1.trace.clone();
347 let mut trace2 = arranged2.trace.clone();
348
349 arranged1.stream.binary_frontier(&arranged2.stream, Pipeline, Pipeline, "Join", move |capability, info| {
350
351 // Acquire an activator to reschedule the operator when it has unfinished work.
352 use timely::scheduling::Activator;
353 let activations = arranged1.stream.scope().activations().clone();
354 let activator = Activator::new(&info.address[..], activations);
355
356 // Our initial invariants are that for each trace, physical compaction is less or equal the trace's upper bound.
357 // These invariants ensure that we can reference observed batch frontiers from `_start_upper` onward, as long as
358 // we maintain our physical compaction capabilities appropriately. These assertions are tested as we load up the
359 // initial work for the two traces, and before the operator is constructed.
360
361 // Acknowledged frontier for each input.
362 // These two are used exclusively to track batch boundaries on which we may want/need to call `cursor_through`.
363 // They will drive our physical compaction of each trace, and we want to maintain at all times that each is beyond
364 // the physical compaction frontier of their corresponding trace.
365 // Should we ever *drop* a trace, these are 1. much harder to maintain correctly, but 2. no longer used.
366 use timely::progress::frontier::Antichain;
367 let mut acknowledged1 = Antichain::from_elem(<G::Timestamp>::minimum());
368 let mut acknowledged2 = Antichain::from_elem(<G::Timestamp>::minimum());
369
370 // deferred work of batches from each input.
371 let mut todo1 = std::collections::VecDeque::new();
372 let mut todo2 = std::collections::VecDeque::new();
373
374 // We'll unload the initial batches here, to put ourselves in a less non-deterministic state to start.
375 trace1.map_batches(|batch1| {
376 acknowledged1.clone_from(batch1.upper());
377 // No `todo1` work here, because we haven't accepted anything into `batches2` yet.
378 // It is effectively "empty", because we choose to drain `trace1` before `trace2`.
379 // Once we start streaming batches in, we will need to respond to new batches from
380 // `input1` with logic that would have otherwise been here. Check out the next loop
381 // for the structure.
382 });
383 // At this point, `ack1` should exactly equal `trace1.read_upper()`, as they are both determined by
384 // iterating through batches and capturing the upper bound. This is a great moment to assert that
385 // `trace1`'s physical compaction frontier is before the frontier of completed times in `trace1`.
386 // TODO: in the case that this does not hold, instead "upgrade" the physical compaction frontier.
387 assert!(PartialOrder::less_equal(&trace1.get_physical_compaction(), &acknowledged1.borrow()));
388
389 // We capture batch2 cursors first and establish work second to avoid taking a `RefCell` lock
390 // on both traces at the same time, as they could be the same trace and this would panic.
391 let mut batch2_cursors = Vec::new();
392 trace2.map_batches(|batch2| {
393 acknowledged2.clone_from(batch2.upper());
394 batch2_cursors.push((batch2.cursor(), batch2.clone()));
395 });
396 // At this point, `ack2` should exactly equal `trace2.read_upper()`, as they are both determined by
397 // iterating through batches and capturing the upper bound. This is a great moment to assert that
398 // `trace2`'s physical compaction frontier is before the frontier of completed times in `trace2`.
399 // TODO: in the case that this does not hold, instead "upgrade" the physical compaction frontier.
400 assert!(PartialOrder::less_equal(&trace2.get_physical_compaction(), &acknowledged2.borrow()));
401
402 // Load up deferred work using trace2 cursors and batches captured just above.
403 for (batch2_cursor, batch2) in batch2_cursors.into_iter() {
404 // It is safe to ask for `ack1` because we have confirmed it to be in advance of `distinguish_since`.
405 let (trace1_cursor, trace1_storage) = trace1.cursor_through(acknowledged1.borrow()).unwrap();
406 // We could downgrade the capability here, but doing so is a bit complicated mathematically.
407 // TODO: downgrade the capability by searching out the one time in `batch2.lower()` and not
408 // in `batch2.upper()`. Only necessary for non-empty batches, as empty batches may not have
409 // that property.
410 todo2.push_back(Deferred::new(trace1_cursor, trace1_storage, batch2_cursor, batch2.clone(), capability.clone()));
411 }
412
413 // Droppable handles to shared trace data structures.
414 let mut trace1_option = Some(trace1);
415 let mut trace2_option = Some(trace2);
416
417 // Swappable buffers for input extraction.
418 let mut input1_buffer = Vec::new();
419 let mut input2_buffer = Vec::new();
420
421 move |input1, input2, output| {
422
423 // 1. Consuming input.
424 //
425 // The join computation repeatedly accepts batches of updates from each of its inputs.
426 //
427 // For each accepted batch, it prepares a work-item to join the batch against previously "accepted"
428 // updates from its other input. It is important to track which updates have been accepted, because
429 // we use a shared trace and there may be updates present that are in advance of this accepted bound.
430 //
431 // Batches are accepted: 1. in bulk at start-up (above), 2. as we observe them in the input stream,
432 // and 3. if the trace can confirm a region of empty space directly following our accepted bound.
433 // This last case is a consequence of our inability to transmit empty batches, as they may be formed
434 // in the absence of timely dataflow capabilities.
435
436 // Drain input 1, prepare work.
437 input1.for_each(|capability, data| {
438 // This test *should* always pass, as we only drop a trace in response to the other input emptying.
439 if let Some(ref mut trace2) = trace2_option {
440 let capability = capability.retain();
441 data.swap(&mut input1_buffer);
442 for batch1 in input1_buffer.drain(..) {
443 // Ignore any pre-loaded data.
444 if PartialOrder::less_equal(&acknowledged1, batch1.lower()) {
445 if !batch1.is_empty() {
446 // It is safe to ask for `ack2` as we validated that it was at least `get_physical_compaction()`
447 // at start-up, and have held back physical compaction ever since.
448 let (trace2_cursor, trace2_storage) = trace2.cursor_through(acknowledged2.borrow()).unwrap();
449 let batch1_cursor = batch1.cursor();
450 todo1.push_back(Deferred::new(trace2_cursor, trace2_storage, batch1_cursor, batch1.clone(), capability.clone()));
451 }
452
453 // To update `acknowledged1` we might presume that `batch1.lower` should equal it, but we
454 // may have skipped over empty batches. Still, the batches are in-order, and we should be
455 // able to just assume the most recent `batch1.upper`
456 debug_assert!(PartialOrder::less_equal(&acknowledged1, batch1.upper()));
457 acknowledged1.clone_from(batch1.upper());
458 }
459 }
460 }
461 else { panic!("`trace2_option` dropped before `input1` emptied!"); }
462 });
463
464 // Drain input 2, prepare work.
465 input2.for_each(|capability, data| {
466 // This test *should* always pass, as we only drop a trace in response to the other input emptying.
467 if let Some(ref mut trace1) = trace1_option {
468 let capability = capability.retain();
469 data.swap(&mut input2_buffer);
470 for batch2 in input2_buffer.drain(..) {
471 // Ignore any pre-loaded data.
472 if PartialOrder::less_equal(&acknowledged2, batch2.lower()) {
473 if !batch2.is_empty() {
474 // It is safe to ask for `ack1` as we validated that it was at least `get_physical_compaction()`
475 // at start-up, and have held back physical compaction ever since.
476 let (trace1_cursor, trace1_storage) = trace1.cursor_through(acknowledged1.borrow()).unwrap();
477 let batch2_cursor = batch2.cursor();
478 todo2.push_back(Deferred::new(trace1_cursor, trace1_storage, batch2_cursor, batch2.clone(), capability.clone()));
479 }
480
481 // To update `acknowledged2` we might presume that `batch2.lower` should equal it, but we
482 // may have skipped over empty batches. Still, the batches are in-order, and we should be
483 // able to just assume the most recent `batch2.upper`
484 debug_assert!(PartialOrder::less_equal(&acknowledged2, batch2.upper()));
485 acknowledged2.clone_from(batch2.upper());
486 }
487 }
488 }
489 else { panic!("`trace1_option` dropped before `input2` emptied!"); }
490 });
491
492 // Advance acknowledged frontiers through any empty regions that we may not receive as batches.
493 if let Some(trace1) = trace1_option.as_mut() {
494 trace1.advance_upper(&mut acknowledged1);
495 }
496 if let Some(trace2) = trace2_option.as_mut() {
497 trace2.advance_upper(&mut acknowledged2);
498 }
499
500 // 2. Join computation.
501 //
502 // For each of the inputs, we do some amount of work (measured in terms of number
503 // of output records produced). This is meant to yield control to allow downstream
504 // operators to consume and reduce the output, but it it also means to provide some
505 // degree of responsiveness. There is a potential risk here that if we fall behind
506 // then the increasing queues hold back physical compaction of the underlying traces
507 // which results in unintentionally quadratic processing time (each batch of either
508 // input must scan all batches from the other input).
509
510 // Perform some amount of outstanding work.
511 let mut fuel = 1_000_000;
512 while !todo1.is_empty() && fuel > 0 {
513 todo1.front_mut().unwrap().work(
514 output,
515 |k,v2,v1,t,r2,r1| result(k,v1,v2,t,r1,r2),
516 &mut fuel
517 );
518 if !todo1.front().unwrap().work_remains() { todo1.pop_front(); }
519 }
520
521 // Perform some amount of outstanding work.
522 let mut fuel = 1_000_000;
523 while !todo2.is_empty() && fuel > 0 {
524 todo2.front_mut().unwrap().work(
525 output,
526 |k,v1,v2,t,r1,r2| result(k,v1,v2,t,r1,r2),
527 &mut fuel
528 );
529 if !todo2.front().unwrap().work_remains() { todo2.pop_front(); }
530 }
531
532 // Re-activate operator if work remains.
533 if !todo1.is_empty() || !todo2.is_empty() {
534 activator.activate();
535 }
536
537 // 3. Trace maintenance.
538 //
539 // Importantly, we use `input.frontier()` here rather than `acknowledged` to track
540 // the progress of an input, because should we ever drop one of the traces we will
541 // lose the ability to extract information from anything other than the input.
542 // For example, if we dropped `trace2` we would not be able to use `advance_upper`
543 // to keep `acknowledged2` up to date wrt empty batches, and would hold back logical
544 // compaction of `trace1`.
545
546 // Maintain `trace1`. Drop if `input2` is empty, or advance based on future needs.
547 if let Some(trace1) = trace1_option.as_mut() {
548 if input2.frontier().is_empty() { trace1_option = None; }
549 else {
550 // Allow `trace1` to compact logically up to the frontier we may yet receive,
551 // in the opposing input (`input2`). All `input2` times will be beyond this
552 // frontier, and joined times only need to be accurate when advanced to it.
553 trace1.set_logical_compaction(input2.frontier().frontier());
554 // Allow `trace1` to compact physically up to the upper bound of batches we
555 // have received in its input (`input1`). We will not require a cursor that
556 // is not beyond this bound.
557 trace1.set_physical_compaction(acknowledged1.borrow());
558 }
559 }
560
561 // Maintain `trace2`. Drop if `input1` is empty, or advance based on future needs.
562 if let Some(trace2) = trace2_option.as_mut() {
563 if input1.frontier().is_empty() { trace2_option = None;}
564 else {
565 // Allow `trace2` to compact logically up to the frontier we may yet receive,
566 // in the opposing input (`input1`). All `input1` times will be beyond this
567 // frontier, and joined times only need to be accurate when advanced to it.
568 trace2.set_logical_compaction(input1.frontier().frontier());
569 // Allow `trace2` to compact physically up to the upper bound of batches we
570 // have received in its input (`input2`). We will not require a cursor that
571 // is not beyond this bound.
572 trace2.set_physical_compaction(acknowledged2.borrow());
573 }
574 }
575 }
576 })
577 .as_collection()
578}
579
580
581/// Deferred join computation.
582///
583/// The structure wraps cursors which allow us to play out join computation at whatever rate we like.
584/// This allows us to avoid producing and buffering massive amounts of data, without giving the timely
585/// dataflow system a chance to run operators that can consume and aggregate the data.
586struct Deferred<T, R, C1, C2, D>
587where
588 T: Timestamp+Lattice+Ord,
589 R: Semigroup,
590 C1: Cursor<Time=T>,
591 C2: for<'a> Cursor<Key<'a>=C1::Key<'a>, Time=T>,
592 C1::Diff: Semigroup,
593 C2::Diff: Semigroup,
594 D: Ord+Clone+Data,
595{
596 trace: C1,
597 trace_storage: C1::Storage,
598 batch: C2,
599 batch_storage: C2::Storage,
600 capability: Capability<T>,
601 done: bool,
602 temp: Vec<((D, T), R)>,
603}
604
605impl<T, R, C1, C2, D> Deferred<T, R, C1, C2, D>
606where
607 C1: Cursor<Time=T>,
608 C2: for<'a> Cursor<Key<'a>=C1::Key<'a>, Time=T>,
609 C1::Diff: Semigroup,
610 C2::Diff: Semigroup,
611 T: Timestamp+Lattice+Ord,
612 R: Semigroup,
613 D: Clone+Data,
614{
615 fn new(trace: C1, trace_storage: C1::Storage, batch: C2, batch_storage: C2::Storage, capability: Capability<T>) -> Self {
616 Deferred {
617 trace,
618 trace_storage,
619 batch,
620 batch_storage,
621 capability,
622 done: false,
623 temp: Vec::new(),
624 }
625 }
626
627 fn work_remains(&self) -> bool {
628 !self.done
629 }
630
631 /// Process keys until at least `fuel` output tuples produced, or the work is exhausted.
632 #[inline(never)]
633 fn work<L, I>(&mut self, output: &mut OutputHandle<T, (D, T, R), Tee<T, (D, T, R)>>, mut logic: L, fuel: &mut usize)
634 where
635 I: IntoIterator<Item=(D, T, R)>,
636 L: for<'a> FnMut(C1::Key<'a>, C1::Val<'a>, C2::Val<'a>, &T, &C1::Diff, &C2::Diff)->I,
637 {
638
639 let meet = self.capability.time();
640
641 let mut effort = 0;
642 let mut session = output.session(&self.capability);
643
644 let trace_storage = &self.trace_storage;
645 let batch_storage = &self.batch_storage;
646
647 let trace = &mut self.trace;
648 let batch = &mut self.batch;
649
650 let temp = &mut self.temp;
651 let mut thinker = JoinThinker::new();
652
653 while batch.key_valid(batch_storage) && trace.key_valid(trace_storage) && effort < *fuel {
654
655 match trace.key(trace_storage).cmp(&batch.key(batch_storage)) {
656 Ordering::Less => trace.seek_key(trace_storage, batch.key(batch_storage)),
657 Ordering::Greater => batch.seek_key(batch_storage, trace.key(trace_storage)),
658 Ordering::Equal => {
659
660 thinker.history1.edits.load(trace, trace_storage, |time| time.join(meet));
661 thinker.history2.edits.load(batch, batch_storage, |time| time.clone());
662
663 assert_eq!(temp.len(), 0);
664
665 // populate `temp` with the results in the best way we know how.
666 thinker.think(|v1,v2,t,r1,r2| {
667 let key = batch.key(batch_storage);
668 for (d, t, r) in logic(key, v1, v2, &t, r1, r2) {
669 temp.push(((d, t), r));
670 }
671 });
672
673 // TODO: This consolidation is optional, and it may not be very
674 // helpful. We might try harder to understand whether we
675 // should do this work here, or downstream at consumers.
676 // TODO: Perhaps `thinker` should have the buffer, do smarter
677 // consolidation, and then deposit results in `session`.
678 crate::consolidation::consolidate(temp);
679
680 effort += temp.len();
681 for ((d, t), r) in temp.drain(..) {
682 session.give((d, t, r));
683 }
684
685 batch.step_key(batch_storage);
686 trace.step_key(trace_storage);
687
688 thinker.history1.clear();
689 thinker.history2.clear();
690 }
691 }
692 }
693
694 self.done = !batch.key_valid(batch_storage) || !trace.key_valid(trace_storage);
695
696 if effort > *fuel { *fuel = 0; }
697 else { *fuel -= effort; }
698 }
699}
700
701struct JoinThinker<'a, C1, C2>
702where
703 C1: Cursor,
704 C2: Cursor<Time = C1::Time>,
705 C1::Time: Lattice+Ord+Clone,
706 C1::Diff: Semigroup,
707 C2::Diff: Semigroup,
708{
709 pub history1: ValueHistory<'a, C1>,
710 pub history2: ValueHistory<'a, C2>,
711}
712
713impl<'a, C1, C2> JoinThinker<'a, C1, C2>
714where
715 C1: Cursor,
716 C2: Cursor<Time = C1::Time>,
717 C1::Time: Lattice+Ord+Clone,
718 C1::Diff: Semigroup,
719 C2::Diff: Semigroup,
720{
721 fn new() -> Self {
722 JoinThinker {
723 history1: ValueHistory::new(),
724 history2: ValueHistory::new(),
725 }
726 }
727
728 fn think<F: FnMut(C1::Val<'a>,C2::Val<'a>,C1::Time,&C1::Diff,&C2::Diff)>(&mut self, mut results: F) {
729
730 // for reasonably sized edits, do the dead-simple thing.
731 if self.history1.edits.len() < 10 || self.history2.edits.len() < 10 {
732 self.history1.edits.map(|v1, t1, d1| {
733 self.history2.edits.map(|v2, t2, d2| {
734 results(v1, v2, t1.join(t2), d1, d2);
735 })
736 })
737 }
738 else {
739
740 let mut replay1 = self.history1.replay();
741 let mut replay2 = self.history2.replay();
742
743 // TODO: It seems like there is probably a good deal of redundant `advance_buffer_by`
744 // in here. If a time is ever repeated, for example, the call will be identical
745 // and accomplish nothing. If only a single record has been added, it may not
746 // be worth the time to collapse (advance, re-sort) the data when a linear scan
747 // is sufficient.
748
749 while !replay1.is_done() && !replay2.is_done() {
750
751 if replay1.time().unwrap().cmp(replay2.time().unwrap()) == ::std::cmp::Ordering::Less {
752 replay2.advance_buffer_by(replay1.meet().unwrap());
753 for &((val2, ref time2), ref diff2) in replay2.buffer().iter() {
754 let (val1, time1, diff1) = replay1.edit().unwrap();
755 results(val1, val2, time1.join(time2), diff1, diff2);
756 }
757 replay1.step();
758 }
759 else {
760 replay1.advance_buffer_by(replay2.meet().unwrap());
761 for &((val1, ref time1), ref diff1) in replay1.buffer().iter() {
762 let (val2, time2, diff2) = replay2.edit().unwrap();
763 results(val1, val2, time1.join(time2), diff1, diff2);
764 }
765 replay2.step();
766 }
767 }
768
769 while !replay1.is_done() {
770 replay2.advance_buffer_by(replay1.meet().unwrap());
771 for &((val2, ref time2), ref diff2) in replay2.buffer().iter() {
772 let (val1, time1, diff1) = replay1.edit().unwrap();
773 results(val1, val2, time1.join(time2), diff1, diff2);
774 }
775 replay1.step();
776 }
777 while !replay2.is_done() {
778 replay1.advance_buffer_by(replay2.meet().unwrap());
779 for &((val1, ref time1), ref diff1) in replay1.buffer().iter() {
780 let (val2, time2, diff2) = replay2.edit().unwrap();
781 results(val1, val2, time1.join(time2), diff1, diff2);
782 }
783 replay2.step();
784 }
785 }
786 }
787}