differential_dataflow/operators/iterate.rs
1//! Iterative application of a differential dataflow fragment.
2//!
3//! The `iterate` operator takes as an argument a closure from a differential dataflow collection
4//! to a collection of the same type. The output collection is the result of applying this closure
5//! an unbounded number of times.
6//!
7//! The implementation of `iterate` does not directly apply the closure, but rather establishes an
8//! iterative timely dataflow subcomputation, in which differences circulate until they dissipate
9//! (indicating that the computation has reached fixed point), or until some number of iterations
10//! have passed.
11//!
12//! **Note**: The dataflow assembled by `iterate` does not automatically insert `consolidate` for
13//! you. This means that either (i) you should insert one yourself, (ii) you should be certain that
14//! all paths from the input to the output of the loop involve consolidation, or (iii) you should
15//! be worried that logically cancelable differences may circulate indefinitely.
16//!
17//! # Details
18//!
19//! The `iterate` method is written using a `Variable`, which lets you define your own iterative
20//! computations when `iterate` itself is not sufficient. This can happen when you have two
21//! collections that should evolve simultaneously, or when you would like to rotate your loop and
22//! return an intermediate result.
23//!
24//! Using `Variable` requires more explicit arrangement of your computation, but isn't much more
25//! complicated. You must define a new variable from an existing stream (its initial value), and
26//! then set it to be a function of this variable (and perhaps other collections and variables).
27//!
28//! A `Variable` dereferences to a `Collection`, the one corresponding to its value in each iteration,
29//! and it can be used in most situations where a collection can be used. The act of setting a
30//! `Variable` consumes it and returns the corresponding `Collection`, preventing you from setting
31//! it multiple times.
32
33use std::fmt::Debug;
34use std::ops::Deref;
35
36use timely::progress::{Timestamp, PathSummary};
37use timely::order::Product;
38
39use timely::dataflow::*;
40use timely::dataflow::scopes::child::Iterative;
41use timely::dataflow::operators::{Feedback, ConnectLoop, Map};
42use timely::dataflow::operators::feedback::Handle;
43
44use crate::{Data, Collection};
45use crate::difference::{Semigroup, Abelian};
46use crate::lattice::Lattice;
47
48/// An extension trait for the `iterate` method.
49pub trait Iterate<G: Scope, D: Data, R: Semigroup> {
50 /// Iteratively apply `logic` to the source collection until convergence.
51 ///
52 /// Importantly, this method does not automatically consolidate results.
53 /// It may be important to conclude with `consolidate()` to ensure that
54 /// logically empty collections that contain cancelling records do not
55 /// result in non-termination. Operators like `reduce`, `distinct`, and
56 /// `count` also perform consolidation, and are safe to conclude with.
57 ///
58 /// # Examples
59 ///
60 /// ```
61 /// use differential_dataflow::input::Input;
62 /// use differential_dataflow::operators::Iterate;
63 ///
64 /// ::timely::example(|scope| {
65 ///
66 /// scope.new_collection_from(1 .. 10u32).1
67 /// .iterate(|values| {
68 /// values.map(|x| if x % 2 == 0 { x/2 } else { x })
69 /// .consolidate()
70 /// });
71 /// });
72 /// ```
73 fn iterate<F>(&self, logic: F) -> Collection<G, D, R>
74 where
75 G::Timestamp: Lattice,
76 for<'a> F: FnOnce(&Collection<Iterative<'a, G, u64>, D, R>)->Collection<Iterative<'a, G, u64>, D, R>;
77}
78
79impl<G: Scope, D: Ord+Data+Debug, R: Abelian> Iterate<G, D, R> for Collection<G, D, R> {
80 fn iterate<F>(&self, logic: F) -> Collection<G, D, R>
81 where G::Timestamp: Lattice,
82 for<'a> F: FnOnce(&Collection<Iterative<'a, G, u64>, D, R>)->Collection<Iterative<'a, G, u64>, D, R> {
83
84 self.inner.scope().scoped("Iterate", |subgraph| {
85 // create a new variable, apply logic, bind variable, return.
86 //
87 // this could be much more succinct if we returned the collection
88 // wrapped by `variable`, but it also results in substantially more
89 // diffs produced; `result` is post-consolidation, and means fewer
90 // records are yielded out of the loop.
91 let variable = Variable::new_from(self.enter(subgraph), Product::new(Default::default(), 1));
92 let result = logic(&variable);
93 variable.set(&result);
94 result.leave()
95 })
96 }
97}
98
99impl<G: Scope, D: Ord+Data+Debug, R: Semigroup> Iterate<G, D, R> for G {
100 fn iterate<F>(&self, logic: F) -> Collection<G, D, R>
101 where G::Timestamp: Lattice,
102 for<'a> F: FnOnce(&Collection<Iterative<'a, G, u64>, D, R>)->Collection<Iterative<'a, G, u64>, D, R> {
103
104 // TODO: This makes me think we have the wrong ownership pattern here.
105 let mut clone = self.clone();
106 clone
107 .scoped("Iterate", |subgraph| {
108 // create a new variable, apply logic, bind variable, return.
109 //
110 // this could be much more succinct if we returned the collection
111 // wrapped by `variable`, but it also results in substantially more
112 // diffs produced; `result` is post-consolidation, and means fewer
113 // records are yielded out of the loop.
114 let variable = SemigroupVariable::new(subgraph, Product::new(Default::default(), 1));
115 let result = logic(&variable);
116 variable.set(&result);
117 result.leave()
118 }
119 )
120 }
121}
122
123/// A recursively defined collection.
124///
125/// The `Variable` struct allows differential dataflow programs requiring more sophisticated
126/// iterative patterns than singly recursive iteration. For example: in mutual recursion two
127/// collections evolve simultaneously.
128///
129/// # Examples
130///
131/// The following example is equivalent to the example for the `Iterate` trait.
132///
133/// ```
134/// use timely::order::Product;
135/// use timely::dataflow::Scope;
136///
137/// use differential_dataflow::input::Input;
138/// use differential_dataflow::operators::iterate::Variable;
139///
140/// ::timely::example(|scope| {
141///
142/// let numbers = scope.new_collection_from(1 .. 10u32).1;
143///
144/// scope.iterative::<u64,_,_>(|nested| {
145/// let summary = Product::new(Default::default(), 1);
146/// let variable = Variable::new_from(numbers.enter(nested), summary);
147/// let result = variable.map(|x| if x % 2 == 0 { x/2 } else { x })
148/// .consolidate();
149/// variable.set(&result)
150/// .leave()
151/// });
152/// })
153/// ```
154pub struct Variable<G: Scope, D: Data, R: Abelian>
155where G::Timestamp: Lattice {
156 collection: Collection<G, D, R>,
157 feedback: Handle<G, (D, G::Timestamp, R)>,
158 source: Option<Collection<G, D, R>>,
159 step: <G::Timestamp as Timestamp>::Summary,
160}
161
162impl<G: Scope, D: Data, R: Abelian> Variable<G, D, R> where G::Timestamp: Lattice {
163 /// Creates a new initially empty `Variable`.
164 ///
165 /// This method produces a simpler dataflow graph than `new_from`, and should
166 /// be used whenever the variable has an empty input.
167 pub fn new(scope: &mut G, step: <G::Timestamp as Timestamp>::Summary) -> Self {
168 let (feedback, updates) = scope.feedback(step.clone());
169 let collection = Collection::new(updates);
170 Variable { collection, feedback, source: None, step }
171 }
172
173 /// Creates a new `Variable` from a supplied `source` stream.
174 pub fn new_from(source: Collection<G, D, R>, step: <G::Timestamp as Timestamp>::Summary) -> Self {
175 let (feedback, updates) = source.inner.scope().feedback(step.clone());
176 let collection = Collection::new(updates).concat(&source);
177 Variable { collection, feedback, source: Some(source), step }
178 }
179
180 /// Set the definition of the `Variable` to a collection.
181 ///
182 /// This method binds the `Variable` to be equal to the supplied collection,
183 /// which may be recursively defined in terms of the variable itself.
184 pub fn set(self, result: &Collection<G, D, R>) -> Collection<G, D, R> {
185 let mut in_result = result.clone();
186 if let Some(source) = &self.source {
187 in_result = in_result.concat(&source.negate());
188 }
189 self.set_concat(&in_result)
190 }
191
192 /// Set the definition of the `Variable` to a collection concatenated to `self`.
193 ///
194 /// This method is a specialization of `set` which has the effect of concatenating
195 /// `result` and `self` before calling `set`. This method avoids some dataflow
196 /// complexity related to retracting the initial input, and will do less work in
197 /// that case.
198 ///
199 /// This behavior can also be achieved by using `new` to create an empty initial
200 /// collection, and then using `self.set(self.concat(result))`.
201 pub fn set_concat(self, result: &Collection<G, D, R>) -> Collection<G, D, R> {
202 let step = self.step;
203 result
204 .inner
205 .flat_map(move |(x,t,d)| step.results_in(&t).map(|t| (x,t,d)))
206 .connect_loop(self.feedback);
207
208 self.collection
209 }
210}
211
212impl<G: Scope, D: Data, R: Abelian> Deref for Variable<G, D, R> where G::Timestamp: Lattice {
213 type Target = Collection<G, D, R>;
214 fn deref(&self) -> &Self::Target {
215 &self.collection
216 }
217}
218
219/// A recursively defined collection that only "grows".
220///
221/// `SemigroupVariable` is a weakening of `Variable` to allow difference types
222/// that do not implement `Abelian` and only implement `Semigroup`. This means
223/// that it can be used in settings where the difference type does not support
224/// negation.
225pub struct SemigroupVariable<G: Scope, D: Data, R: Semigroup>
226where G::Timestamp: Lattice {
227 collection: Collection<G, D, R>,
228 feedback: Handle<G, (D, G::Timestamp, R)>,
229 step: <G::Timestamp as Timestamp>::Summary,
230}
231
232impl<G: Scope, D: Data, R: Semigroup> SemigroupVariable<G, D, R> where G::Timestamp: Lattice {
233 /// Creates a new initially empty `SemigroupVariable`.
234 pub fn new(scope: &mut G, step: <G::Timestamp as Timestamp>::Summary) -> Self {
235 let (feedback, updates) = scope.feedback(step.clone());
236 let collection = Collection::new(updates);
237 SemigroupVariable { collection, feedback, step }
238 }
239
240 /// Adds a new source of data to `self`.
241 pub fn set(self, result: &Collection<G, D, R>) -> Collection<G, D, R> {
242 let step = self.step;
243 result
244 .inner
245 .flat_map(move |(x,t,d)| step.results_in(&t).map(|t| (x,t,d)))
246 .connect_loop(self.feedback);
247
248 self.collection
249 }
250}
251
252impl<G: Scope, D: Data, R: Semigroup> Deref for SemigroupVariable<G, D, R> where G::Timestamp: Lattice {
253 type Target = Collection<G, D, R>;
254 fn deref(&self) -> &Self::Target {
255 &self.collection
256 }
257}