differential_dataflow/algorithms/graphs/sequential.rs
1//! Sequential (non-concurrent) graph algorithms.
2
3use std::hash::Hash;
4
5use timely::dataflow::*;
6
7use crate::{Collection, ExchangeData};
8use crate::lattice::Lattice;
9use crate::operators::*;
10use crate::hashable::Hashable;
11
12fn _color<G, N>(edges: &Collection<G, (N,N)>) -> Collection<G,(N,Option<u32>)>
13where
14 G: Scope,
15 G::Timestamp: Lattice+Ord,
16 N: ExchangeData+Hash,
17{
18 // need some bogus initial values.
19 let start = edges.map(|(x,_y)| (x,u32::max_value()))
20 .distinct();
21
22 // repeatedly apply color-picking logic.
23 sequence(&start, edges, |_node, vals| {
24
25 // look for the first absent positive integer.
26 // start at 1 in case we ever use NonZero<u32>.
27
28 (1u32 ..)
29 .find(|&i| vals.get(i as usize - 1).map(|x| *x.0) != Some(i))
30 .unwrap()
31 })
32}
33
34/// Applies `logic` to nodes sequentially, in order of node identifiers.
35///
36/// The `logic` function updates a node's state as a function of its
37/// neighbor states. It will only be called on complete input.
38///
39/// Internally, this method performs a fixed-point computation in which
40/// a node "fires" once all of its neighbors with lower identifier have
41/// fired, and we apply `logic` to the new state of lower neighbors and
42/// the old state (input) of higher neighbors.
43pub fn sequence<G, N, V, F>(
44 state: &Collection<G, (N,V)>,
45 edges: &Collection<G, (N,N)>,
46 logic: F) -> Collection<G, (N,Option<V>)>
47where
48 G: Scope,
49 G::Timestamp: Lattice+Hash+Ord,
50 N: ExchangeData+Hashable,
51 V: ExchangeData,
52 F: Fn(&N, &[(&V, isize)])->V+'static
53{
54
55 let _timer = ::std::time::Instant::now();
56
57 // start iteration with None messages for all.
58 state
59 .map(|(node, _state)| (node, None))
60 .iterate(|new_state| {
61 // immutable content: edges and initial state.
62 let edges = edges.enter(&new_state.scope());
63 let old_state = state.enter(&new_state.scope());
64 // .map(|x| (x.0, Some(x.1)));
65
66 // break edges into forward and reverse directions.
67 let forward = edges.filter(|edge| edge.0 < edge.1);
68 let reverse = edges.filter(|edge| edge.0 > edge.1);
69
70 // new state goes along forward edges, old state along reverse edges
71 let new_messages = new_state.join_map(&forward, |_k,v,d| (d.clone(),v.clone()));
72
73 let incomplete = new_messages.filter(|x| x.1.is_none()).map(|x| x.0).distinct();
74 let new_messages = new_messages.filter(|x| x.1.is_some()).map(|x| (x.0, x.1.unwrap()));
75
76 let old_messages = old_state.join_map(&reverse, |_k,v,d| (d.clone(),v.clone()));
77
78 let messages = new_messages.concat(&old_messages).antijoin(&incomplete);
79
80 // // determine who has incoming `None` messages, and suppress all of them.
81 // let incomplete = new_messages.filter(|x| x.1.is_none()).map(|x| x.0).distinct();
82
83 // merge messages; suppress computation if not all inputs available yet.
84 messages
85 // .concat(&old_messages) // /-- possibly too clever: None if any inputs None.
86 // .antijoin(&incomplete)
87 .reduce(move |k, vs, t| t.push((Some(logic(k,vs)),1)))
88 .concat(&incomplete.map(|x| (x, None)))
89 })
90}