1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
//! This module contains all DICOM data element decoding logic.

use self::explicit_le::ExplicitVRLittleEndianDecoder;
use self::implicit_le::{ImplicitVRLittleEndianDecoder, StandardImplicitVRLittleEndianDecoder};
use byteordered::Endianness;
use dicom_core::header::{DataElementHeader, SequenceItemHeader};
use dicom_core::Tag;
use snafu::{Backtrace, Snafu};
use std::io::{self, Read};

pub mod basic;
pub mod explicit_be;
pub mod explicit_le;
pub mod implicit_le;

#[deprecated(since = "0.3.0")]
pub use dicom_core::value::deserialize as primitive_value;

/// Module-level error type:
/// for errors which may occur while decoding DICOM data.
#[derive(Debug, Snafu)]
#[non_exhaustive]
pub enum Error {
    #[snafu(display("Failed to read the beginning (tag) of the header"))]
    ReadHeaderTag {
        backtrace: Option<Backtrace>,
        source: io::Error,
    },
    #[snafu(display("Failed to read the item header"))]
    ReadItemHeader {
        backtrace: Backtrace,
        source: io::Error,
    },
    #[snafu(display("Failed to read the header's item length field"))]
    ReadItemLength {
        backtrace: Backtrace,
        source: io::Error,
    },
    #[snafu(display("Failed to read the header's tag field"))]
    ReadTag {
        backtrace: Backtrace,
        source: io::Error,
    },
    #[snafu(display("Failed to read the header's reserved bytes"))]
    ReadReserved {
        backtrace: Backtrace,
        source: io::Error,
    },
    #[snafu(display("Failed to read the header's element length field"))]
    ReadLength {
        backtrace: Backtrace,
        source: io::Error,
    },
    #[snafu(display("Failed to read the header's value representation"))]
    ReadVr {
        backtrace: Backtrace,
        source: io::Error,
    },
    #[snafu(display("Bad sequence item header"))]
    BadSequenceHeader {
        source: dicom_core::header::SequenceItemHeaderError,
    },
}

pub type Result<T> = std::result::Result<T, Error>;

/** Obtain the default data element decoder.
 * According to the standard, data elements are encoded in Implicit
 * VR Little Endian by default.
 */
pub fn default_reader() -> StandardImplicitVRLittleEndianDecoder {
    ImplicitVRLittleEndianDecoder::default()
}

/** Obtain a data element decoder for reading the data elements in a DICOM
 * file's Meta information. According to the standard, these are always
 * encoded in Explicit VR Little Endian.
 */
pub fn file_header_decoder() -> ExplicitVRLittleEndianDecoder {
    ExplicitVRLittleEndianDecoder::default()
}

/** Type trait for reading and decoding basic data values from a data source.
 *
 * This trait aims to provide methods for reading binary numbers based on the
 * source's endianness. Unlike `Decode`, this trait is not object safe.
 * However, it doesn't have to because there are, and only will be, two
 * possible implementations (`LittleEndianBasicDecoder` and
 * `BigEndianBasicDecoder`).
 */
pub trait BasicDecode {
    /// Retrieve the source's endianness, as expected by this decoder.
    fn endianness(&self) -> Endianness;

    /// Decode an unsigned short value from the given source.
    fn decode_us<S>(&self, source: S) -> std::io::Result<u16>
    where
        S: Read;

    /// Decode an unsigned long value from the given source.
    fn decode_ul<S>(&self, source: S) -> std::io::Result<u32>
    where
        S: Read;

    /// Decode an unsigned very long value from the given source.
    fn decode_uv<S>(&self, source: S) -> std::io::Result<u64>
    where
        S: Read;

    /// Decode a signed short value from the given source.
    fn decode_ss<S>(&self, source: S) -> std::io::Result<i16>
    where
        S: Read;

    /// Decode a signed long value from the given source.
    fn decode_sl<S>(&self, source: S) -> std::io::Result<i32>
    where
        S: Read;

    /// Decode a signed very long value from the given source.
    fn decode_sv<S>(&self, source: S) -> std::io::Result<i64>
    where
        S: Read;

    /// Decode a single precision float value from the given source.
    fn decode_fl<S>(&self, source: S) -> std::io::Result<f32>
    where
        S: Read;

    /// Decode a double precision float value from the given source.
    fn decode_fd<S>(&self, source: S) -> std::io::Result<f64>
    where
        S: Read;

    /// Decode a DICOM attribute tag from the given source.
    fn decode_tag<S>(&self, mut source: S) -> std::io::Result<Tag>
    where
        S: Read,
    {
        let g = self.decode_us(&mut source)?;
        let e = self.decode_us(source)?;
        Ok(Tag(g, e))
    }
}

impl<T: ?Sized> BasicDecode for Box<T>
where
    T: BasicDecode,
{
    fn endianness(&self) -> Endianness {
        self.as_ref().endianness()
    }

    fn decode_us<S>(&self, source: S) -> std::io::Result<u16>
    where
        S: Read,
    {
        (**self).decode_us(source)
    }

    fn decode_ul<S>(&self, source: S) -> std::io::Result<u32>
    where
        S: Read,
    {
        (**self).decode_ul(source)
    }

    fn decode_uv<S>(&self, source: S) -> std::io::Result<u64>
    where
        S: Read,
    {
        (**self).decode_uv(source)
    }

    fn decode_ss<S>(&self, source: S) -> std::io::Result<i16>
    where
        S: Read,
    {
        (**self).decode_ss(source)
    }

    fn decode_sl<S>(&self, source: S) -> std::io::Result<i32>
    where
        S: Read,
    {
        (**self).decode_sl(source)
    }

    fn decode_sv<S>(&self, source: S) -> std::io::Result<i64>
    where
        S: Read,
    {
        (**self).decode_sv(source)
    }

    fn decode_fl<S>(&self, source: S) -> std::io::Result<f32>
    where
        S: Read,
    {
        (**self).decode_fl(source)
    }

    fn decode_fd<S>(&self, source: S) -> std::io::Result<f64>
    where
        S: Read,
    {
        (**self).decode_fd(source)
    }

    fn decode_tag<S>(&self, source: S) -> std::io::Result<Tag>
    where
        S: Read,
    {
        (**self).decode_tag(source)
    }
}

impl<'a, T: ?Sized> BasicDecode for &'a T
where
    T: BasicDecode,
{
    fn endianness(&self) -> Endianness {
        (*self).endianness()
    }

    fn decode_us<S>(&self, source: S) -> std::io::Result<u16>
    where
        S: Read,
    {
        (**self).decode_us(source)
    }

    fn decode_ul<S>(&self, source: S) -> std::io::Result<u32>
    where
        S: Read,
    {
        (**self).decode_ul(source)
    }

    fn decode_uv<S>(&self, source: S) -> std::io::Result<u64>
    where
        S: Read,
    {
        (**self).decode_uv(source)
    }

    fn decode_ss<S>(&self, source: S) -> std::io::Result<i16>
    where
        S: Read,
    {
        (**self).decode_ss(source)
    }

    fn decode_sl<S>(&self, source: S) -> std::io::Result<i32>
    where
        S: Read,
    {
        (**self).decode_sl(source)
    }

    fn decode_sv<S>(&self, source: S) -> std::io::Result<i64>
    where
        S: Read,
    {
        (**self).decode_sv(source)
    }

    fn decode_fl<S>(&self, source: S) -> std::io::Result<f32>
    where
        S: Read,
    {
        (**self).decode_fl(source)
    }

    fn decode_fd<S>(&self, source: S) -> std::io::Result<f64>
    where
        S: Read,
    {
        (**self).decode_fd(source)
    }

    fn decode_tag<S>(&self, source: S) -> std::io::Result<Tag>
    where
        S: Read,
    {
        (**self).decode_tag(source)
    }
}

/** Type trait for reading and decoding DICOM data elements.
 *
 * The specific behaviour of decoding, even when abstracted from the original source,
 * may depend on the transfer syntax.
 */
pub trait Decode {
    /** Fetch and decode the next data element header from the given source.
     * This method returns only the header of the element. At the end of this operation, the source
     * will be pointing at the element's value data, which should be read or skipped as necessary.
     *
     * Decoding an item or sequence delimiter is considered valid, and so should be properly handled
     * by the decoder. The value representation in this case should be `UN`.
     *
     * Returns the expected header and the exact number of bytes read from the source.
     */
    fn decode_header<S>(&self, source: &mut S) -> Result<(DataElementHeader, usize)>
    where
        S: ?Sized + Read;

    /** Fetch and decode the next sequence item head from the given source. It is a separate method
     * because value representation is always implicit when reading item headers and delimiters.
     * This method returns only the header of the item. At the end of this operation, the source
     * will be pointing at the beginning of the item's data, which should be traversed if necessary.
     */
    fn decode_item_header<S>(&self, source: &mut S) -> Result<SequenceItemHeader>
    where
        S: ?Sized + Read;

    /// Decode a DICOM attribute tag from the given source.
    fn decode_tag<S>(&self, source: &mut S) -> Result<Tag>
    where
        S: ?Sized + Read;
}

impl<T: ?Sized> Decode for Box<T>
where
    T: Decode,
{
    fn decode_header<S>(&self, source: &mut S) -> Result<(DataElementHeader, usize)>
    where
        S: ?Sized + Read,
    {
        (**self).decode_header(source)
    }

    fn decode_item_header<S>(&self, source: &mut S) -> Result<SequenceItemHeader>
    where
        S: ?Sized + Read,
    {
        (**self).decode_item_header(source)
    }

    fn decode_tag<S>(&self, source: &mut S) -> Result<Tag>
    where
        S: ?Sized + Read,
    {
        (**self).decode_tag(source)
    }
}

impl<'a, T: ?Sized> Decode for &'a T
where
    T: Decode,
{
    fn decode_header<S>(&self, source: &mut S) -> Result<(DataElementHeader, usize)>
    where
        S: ?Sized + Read,
    {
        (**self).decode_header(source)
    }

    fn decode_item_header<S>(&self, source: &mut S) -> Result<SequenceItemHeader>
    where
        S: ?Sized + Read,
    {
        (**self).decode_item_header(source)
    }

    fn decode_tag<S>(&self, source: &mut S) -> Result<Tag>
    where
        S: ?Sized + Read,
    {
        (**self).decode_tag(source)
    }
}

/** Type trait for reading and decoding DICOM data elements from a specific source
 * reader type.
 *
 * The specific behaviour of decoding, even when abstracted from the original source,
 * may depend on the transfer syntax.
 */
pub trait DecodeFrom<S: ?Sized + Read> {
    /** Fetch and decode the next data element header from the given source.
     * This method returns only the header of the element. At the end of this operation, the source
     * will be pointing at the element's value data, which should be read or skipped as necessary.
     *
     * Decoding an item or sequence delimiter is considered valid, and so should be properly handled
     * by the decoder. The value representation in this case should be `UN`.
     *
     * Returns the expected header and the exact number of bytes read from the source.
     */
    fn decode_header(&self, source: &mut S) -> Result<(DataElementHeader, usize)>;

    /** Fetch and decode the next sequence item head from the given source. It is a separate method
     * because value representation is always implicit when reading item headers and delimiters.
     * This method returns only the header of the item. At the end of this operation, the source
     * will be pointing at the beginning of the item's data, which should be traversed if necessary.
     */
    fn decode_item_header(&self, source: &mut S) -> Result<SequenceItemHeader>;

    /// Decode a DICOM attribute tag from the given source.
    fn decode_tag(&self, source: &mut S) -> Result<Tag>;
}

impl<S: ?Sized, T: ?Sized> DecodeFrom<S> for &T
where
    S: Read,
    T: DecodeFrom<S>,
{
    fn decode_header(&self, source: &mut S) -> Result<(DataElementHeader, usize)> {
        (**self).decode_header(source)
    }

    fn decode_item_header(&self, source: &mut S) -> Result<SequenceItemHeader> {
        (**self).decode_item_header(source)
    }

    fn decode_tag(&self, source: &mut S) -> Result<Tag> {
        (**self).decode_tag(source)
    }
}

impl<S: ?Sized, T: ?Sized> DecodeFrom<S> for Box<T>
where
    S: Read,
    T: DecodeFrom<S>,
{
    fn decode_header(&self, source: &mut S) -> Result<(DataElementHeader, usize)> {
        (**self).decode_header(source)
    }

    fn decode_item_header(&self, source: &mut S) -> Result<SequenceItemHeader> {
        (**self).decode_item_header(source)
    }

    fn decode_tag(&self, source: &mut S) -> Result<Tag> {
        (**self).decode_tag(source)
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    fn is_decode_from<T: DecodeFrom<dyn Read>>(_decoder: &T) {}

    #[allow(unused)]
    fn boxed_decoder_from_is_decoder_from<T>(decoder: T)
    where
        T: DecodeFrom<dyn Read>,
    {
        is_decode_from(&decoder);
        let boxed = Box::new(decoder);
        is_decode_from(&boxed);
        let erased = boxed as Box<dyn DecodeFrom<dyn Read>>;
        is_decode_from(&erased);
    }
}