1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
mod cpu_kernel;

#[cfg(feature = "cuda")]
mod cuda_kernel;

use std::{marker::PhantomData, sync::Arc};

use crate::{
    nn::tensor_collection::*,
    shapes::{Dtype, Shape},
    tensor::{DeviceStorage, Gradients, Tensor},
    tensor_ops::Device,
};

use super::{Optimizer, OptimizerUpdateError, UnusedTensors, WeightDecay};

/// Configuration of hyperparameters for [Adam].
///
/// Changing all default parameters:
/// ```rust
/// # use dfdx::{prelude::*, optim::*};
/// AdamConfig {
///     lr: 1e-2,
///     betas: [0.1, 0.2],
///     eps: 1e-6,
///     weight_decay: Some(WeightDecay::L2(1e-1)),
/// };
/// ```
#[derive(Debug, Clone, Copy)]
pub struct AdamConfig<E> {
    /// Learning rate. Defaults to `1e-3`.
    pub lr: E,

    /// Betas from Adam paper. Defaults to `[0.9, 0.999]`.
    pub betas: [E; 2],

    /// Epsilon for numerical stability. Defaults to `1e-8`.
    pub eps: E,

    /// Optional weight decay. Defaults to `None`.
    pub weight_decay: Option<WeightDecay<E>>,
}

impl<E: Dtype> Default for AdamConfig<E> {
    fn default() -> Self {
        Self {
            lr: E::from_f32(1e-3).unwrap(),
            betas: [E::from_f32(0.9).unwrap(), E::from_f32(0.999).unwrap()],
            eps: E::from_f32(1e-8).unwrap(),
            weight_decay: None,
        }
    }
}

/// An implementation of the Adam optimizer from
/// [Adam: A Method for Stochastic Optimization](https://arxiv.org/abs/1412.6980)
///
/// # Example Usage
/// ```rust
/// # use dfdx::{prelude::*, optim::*};
/// # type Model = Tensor<Rank0, f32, Cpu>;
/// # let dev: Cpu = Default::default();
/// # let model: Model = dev.zeros();
/// let mut opt: Adam<Model, f32, Cpu> = Adam::new(&model, AdamConfig {
///     lr: 1e-2,
///     betas: [0.5, 0.25],
///     eps: 1e-6,
///     weight_decay: Some(WeightDecay::Decoupled(1e-2)),
/// });
/// ```
///
/// See module level documentation at [crate::optim] for examples of how to actually use an optimizer.
#[derive(Debug)]
pub struct Adam<M, E: Dtype, D: DeviceStorage> {
    /// Hyperparameter configuration
    pub cfg: AdamConfig<E>,

    t: i32,
    moment1: Gradients<E, D>,
    moment2: Gradients<E, D>,

    marker: PhantomData<*const M>,
}

impl<M, E: Dtype, D: DeviceStorage> Adam<M, E, D> {
    /// Constructs using hyperparameters from `cfg`.
    pub fn new(_model: &M, cfg: AdamConfig<E>) -> Self {
        Self {
            cfg,
            t: 0,
            moment1: Gradients::leaky(),
            moment2: Gradients::leaky(),
            marker: PhantomData,
        }
    }
}

pub trait AdamKernel<E: Dtype>: DeviceStorage {
    fn update(
        &self,
        t: i32,
        cfg: &AdamConfig<E>,
        param: &mut Self::Vec<E>,
        moment1: &mut Self::Vec<E>,
        moment2: &mut Self::Vec<E>,
        grad: &Self::Vec<E>,
    ) -> Result<(), Self::Err>;
}

impl<M, D: Device<E>, E: Dtype> TensorVisitor<E, D>
    for (&mut Adam<M, E, D>, &Gradients<E, D>, UnusedTensors)
{
    type Viewer = ViewTensorMut;
    type Err = D::Err;
    type E2 = E;
    type D2 = D;

    fn visit<S: Shape>(
        &mut self,
        opts: TensorOptions<S, E, D>,
        p: &mut Tensor<S, E, D>,
    ) -> Result<Option<Tensor<S, E, D>>, Self::Err> {
        if !opts.do_gradient_update {
            return Ok(None);
        }
        let g = self.1.get_ref_checked(p);
        match g {
            None => self.2.add(p),
            Some(g) => {
                let m_t = self.0.moment1.get_or_alloc_mut(p)?;
                let v_t = self.0.moment2.get_or_alloc_mut(p)?;
                AdamKernel::update(
                    &p.device,
                    self.0.t,
                    &self.0.cfg,
                    Arc::make_mut(&mut p.data),
                    m_t,
                    v_t,
                    g,
                )?;
            }
        }
        Ok(None)
    }
}

impl<M: TensorCollection<E, D>, D: Device<E>, E: Dtype> Optimizer<M, D, E> for Adam<M, E, D> {
    fn update(
        &mut self,
        module: &mut M,
        gradients: &Gradients<E, D>,
    ) -> Result<(), OptimizerUpdateError<D>> {
        self.t = self.t.checked_add(1).unwrap();
        let mut op = (self, gradients, Default::default());
        let result = M::iter_tensors(&mut RecursiveWalker {
            m: module,
            f: &mut op,
        });
        match result {
            Ok(_) => op.2.into(),
            Err(e) => Err(OptimizerUpdateError::DeviceError(e)),
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::{shapes::*, tensor::*, tensor_ops::*, tests::*};

    #[test]
    fn test_default_adam_params() {
        let dev: TestDevice = Default::default();
        let mut t: Tensor<Rank1<5>, TestDtype, _> = dev.ones();
        let mut opt = Adam::new(&t, Default::default());
        let rate = dev.tensor([1e-6, 1e-5, 1e-4, 1e-3, 1e-2]);
        let expected = [
            [0.99999994, 0.999996, 0.9997143, 0.9990244, 0.99900025],
            [0.9999999, 0.999992, 0.99942863, 0.99804884, 0.9980005],
            [0.9999998, 0.999988, 0.999143, 0.9970733, 0.9970008],
            [0.99999976, 0.999984, 0.9988574, 0.99609786, 0.9960012],
            [0.9999997, 0.99998003, 0.9985718, 0.9951225, 0.9950017],
            [0.99999964, 0.99997604, 0.99828625, 0.99414724, 0.9940022],
            [0.9999996, 0.99997205, 0.99800074, 0.9931721, 0.9930029],
            [0.9999995, 0.99996805, 0.9977153, 0.9921971, 0.9920037],
            [0.99999946, 0.99996406, 0.99742985, 0.99122226, 0.99100465],
            [0.9999994, 0.99996006, 0.99714446, 0.99024755, 0.99000573],
        ];

        for e in expected.iter() {
            let gradients = (t.leaky_trace() * rate.clone()).square().mean().backward();
            opt.update(&mut t, &gradients).expect("");
            assert_close_to_literal!(t, e);
        }
    }

    #[test]
    fn test_custom_adam_one_params() {
        let dev: TestDevice = Default::default();
        let mut t: Tensor<Rank1<5>, TestDtype, _> = dev.ones();
        let mut opt = Adam::new(
            &t,
            AdamConfig {
                lr: 1e-3,
                betas: [0.5, 0.25],
                eps: 1e-8,
                weight_decay: None,
            },
        );
        let rate = dev.tensor([1e-4, 1e-3, 1e-2, 1e-1, 1e-0]);
        let expected = [
            [0.9997143, 0.9990244, 0.99900025, 0.999, 0.999],
            [0.99942863, 0.99804866, 0.9980004, 0.9979999, 0.9979999],
            [0.999143, 0.9970728, 0.99700034, 0.9969996, 0.9969996],
            [0.99885744, 0.99609685, 0.9960002, 0.9959992, 0.9959992],
            [0.9985719, 0.9951208, 0.9949999, 0.9949987, 0.9949987],
            [0.99828637, 0.9941448, 0.99399954, 0.9939981, 0.9939981],
            [0.9980009, 0.9931687, 0.9929992, 0.9929975, 0.99299747],
            [0.99771553, 0.9921926, 0.9919988, 0.9919969, 0.9919968],
            [0.9974302, 0.9912166, 0.9909984, 0.99099624, 0.9909962],
            [0.99714494, 0.9902406, 0.989998, 0.9899956, 0.98999554],
        ];

        for e in expected.iter() {
            let gradients = (t.leaky_trace() * rate.clone()).square().mean().backward();
            opt.update(&mut t, &gradients).expect("");
            assert_close_to_literal!(t, e);
        }
    }

    #[test]
    fn test_adam_l2_decay() {
        let dev: TestDevice = Default::default();
        let mut t: Tensor<Rank1<5>, TestDtype, _> = dev.tensor([-0.5, -0.25, 0.1, 0.6, 1.0]);
        let mut opt = Adam::new(
            &t,
            AdamConfig {
                betas: [0.5, 0.25],
                weight_decay: Some(WeightDecay::L2(1.0)),
                ..Default::default()
            },
        );
        #[rustfmt::skip]
        let expected = [
            [-0.499, -0.249, 0.099, 0.59900004, 0.999],
            [-0.49799952, -0.24797276, 0.09799955, 0.5979998, 0.9979998],
            [-0.49699846, -0.24689871, 0.09699859, 0.5969993, 0.99699926],
            [-0.49599692,-0.24575013,0.095997185,0.5959985,0.99599856],
            [-0.49499503,-0.24448763,0.094995454,0.5949976,0.9949977],
            [-0.4939929, -0.24382699, 0.09399351, 0.59399647, 0.9939967],
            [-0.49299058, -0.24413459, 0.09299142, 0.5929953, 0.9929956],
            [-0.49198818, -0.24478404, 0.09198925, 0.59199405, 0.9919945],
            [-0.49098572, -0.24561276, 0.09098703, 0.5909928, 0.9909934],
            [-0.48998323, -0.24548599, 0.08998477, 0.58999157, 0.9899922],
        ];

        for e in expected.iter() {
            let gradients = t.leaky_trace().exp().square().mean().backward();
            opt.update(&mut t, &gradients).expect("");
            assert_close_to_literal!(t, e);
        }
    }

    #[test]
    fn test_adam_decoupled_decay() {
        let dev: TestDevice = Default::default();
        let mut t: Tensor<Rank1<5>, TestDtype, _> = dev.tensor([-0.5, -0.25, 0.1, 0.6, 1.0]);
        let mut opt = Adam::new(
            &t,
            AdamConfig {
                betas: [0.5, 0.25],
                weight_decay: Some(WeightDecay::Decoupled(1.0)),
                ..Default::default()
            },
        );
        #[rustfmt::skip]
        let expected = [
            [-0.5005, -0.25075,  0.098900005,  0.5984,  0.998],
            [-0.5009996, -0.25149944,  0.09780081,  0.59680116,  0.9960015],
            [-0.50149894, -0.25224838,  0.09670238,  0.59520346,  0.9940043],
            [-0.5019978, -0.25299674,  0.09560476,  0.59360695,  0.9920086],
            [-0.50249636, -0.2537445,  0.09450804,  0.5920117,  0.99001455],
            [-0.5029944, -0.25449163,  0.09341227,  0.59041786,  0.98802227],
            [-0.50349206, -0.25523806,  0.092317514,  0.58882546,  0.9860318],
            [-0.5039892, -0.25598377,  0.0912238,  0.5872346,  0.9840432],
            [-0.5044859, -0.25672877,  0.09013115,  0.5856453,  0.98205656],
            [-0.50498205, -0.25747302,  0.08903958,  0.58405757,  0.9800719],
        ];

        for e in expected.iter() {
            let gradients = t.leaky_trace().exp().square().mean().backward();
            opt.update(&mut t, &gradients).expect("");
            assert_close_to_literal!(t, e);
        }
    }

    #[test]
    fn test_unused_tensors() {
        let dev: TestDevice = Default::default();
        let mut t: Tensor<Rank1<5>, TestDtype, _> = dev.sample_normal();
        let mut opt = Adam::new(&t, Default::default());
        opt.update(&mut t, &Gradients::leaky()).expect_err("");
    }
}