1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
//! Module for dealing with wrapped keys and key exchange.
//!
//! For now, this module only deal with keypairs, as the symmetric keys are not wrapped yet.
//!
//! ### Generation/Derivation
//!
//! Using `generate_keypair` will generate a random keypair.
//!
//! Asymmetric keys have two uses. They can be used to [encrypt and decrypt data](##asymmetric) and to perform a [key exchange](#key-exchange).
//!
//! #### `generate_keypair`
//! ```rust
//! use devolutions_crypto::key::{generate_keypair, KeyVersion, KeyPair};
//!
//! let keypair: KeyPair = generate_keypair(KeyVersion::Latest);
//! ```
//!
//! ### Key Exchange
//!
//! The goal of using a key exchange is to get a shared secret key between
//! two parties without making it possible for users listening on the conversation
//! to guess that shared key.
//! 1. Alice and Bob generates a `KeyPair` each.
//! 2. Alice and Bob exchanges their `PublicKey`.
//! 3. Alice mix her `PrivateKey` with Bob's `PublicKey`. This gives her the shared key.
//! 4. Bob mixes his `PrivateKey` with Alice's `PublicKey`. This gives him the shared key.
//! 5. Both Bob and Alice has the same shared key, which they can use for symmetric encryption for further communications.
//!
//! ```rust
//! use devolutions_crypto::key::{generate_keypair, mix_key_exchange, KeyVersion, KeyPair};
//!
//! let bob_keypair: KeyPair = generate_keypair(KeyVersion::Latest);
//! let alice_keypair: KeyPair = generate_keypair(KeyVersion::Latest);
//!
//! let bob_shared = mix_key_exchange(&bob_keypair.private_key, &alice_keypair.public_key).expect("key exchange should not fail");
//!
//! let alice_shared = mix_key_exchange(&alice_keypair.private_key, &bob_keypair.public_key).expect("key exchange should not fail");
//!
//! // They now have a shared secret!
//! assert_eq!(bob_shared, alice_shared);
//! ```

mod key_v1;

use super::DataType;
use super::Error;
use super::Header;
use super::HeaderType;
use super::KeySubtype;
pub use super::KeyVersion;
use super::Result;

use key_v1::{KeyV1Private, KeyV1Public};

use std::convert::TryFrom;

#[cfg(feature = "fuzz")]
use arbitrary::Arbitrary;

#[cfg(feature = "wbindgen")]
use wasm_bindgen::prelude::*;

/// An asymmetric keypair.
#[derive(Clone)]
pub struct KeyPair {
    /// The private key of this pair.
    pub private_key: PrivateKey,
    /// The public key of this pair.
    pub public_key: PublicKey,
}

/// A public key. This key can be sent in clear on unsecured channels and stored publicly.
#[cfg_attr(feature = "wbindgen", wasm_bindgen(inspectable))]
#[cfg_attr(feature = "fuzz", derive(Arbitrary))]
#[derive(Clone, Debug)]
pub struct PublicKey {
    pub(crate) header: Header<PublicKey>,
    payload: PublicKeyPayload,
}

/// A private key. This key should never be sent over an insecure channel or stored unsecurely.
#[cfg_attr(feature = "wbindgen", wasm_bindgen(inspectable))]
#[cfg_attr(feature = "fuzz", derive(Arbitrary))]
#[derive(Clone, Debug)]
pub struct PrivateKey {
    pub(crate) header: Header<PrivateKey>,
    payload: PrivateKeyPayload,
}

impl HeaderType for PublicKey {
    type Version = KeyVersion;
    type Subtype = KeySubtype;

    fn data_type() -> DataType {
        DataType::Key
    }

    fn subtype() -> Self::Subtype {
        KeySubtype::Public
    }
}

impl HeaderType for PrivateKey {
    type Version = KeyVersion;
    type Subtype = KeySubtype;

    fn data_type() -> DataType {
        DataType::Key
    }

    fn subtype() -> Self::Subtype {
        KeySubtype::Private
    }
}

#[derive(Clone, Debug)]
#[cfg_attr(feature = "fuzz", derive(Arbitrary))]
enum PrivateKeyPayload {
    V1(KeyV1Private),
}

#[derive(Clone, Debug)]
#[cfg_attr(feature = "fuzz", derive(Arbitrary))]
enum PublicKeyPayload {
    V1(KeyV1Public),
}

/// Generates a `KeyPair` to use in a key exchange or to encrypt data.
/// # Arguments
///  * `version` - Version of the key scheme to use. Use `KeyVersion::Latest` if you're not dealing with shared data.
/// # Returns
/// Returns a `KeyPair` containing the private key and the public key.
/// # Example
/// ```rust
/// use devolutions_crypto::key::{generate_keypair, KeyVersion};
///
/// let keypair = generate_keypair(KeyVersion::Latest);
/// ```
pub fn generate_keypair(version: KeyVersion) -> KeyPair {
    let (private_header, public_header) = keypair_headers(version);

    let (private_key, public_key) = match version {
        KeyVersion::V1 | KeyVersion::Latest => {
            let keypair = key_v1::generate_keypair();
            (
                PrivateKeyPayload::V1(keypair.private_key),
                PublicKeyPayload::V1(keypair.public_key),
            )
        }
    };

    KeyPair {
        private_key: PrivateKey {
            header: private_header,
            payload: private_key,
        },
        public_key: PublicKey {
            header: public_header,
            payload: public_key,
        },
    }
}

/// Mix a `PrivateKey` with another client `PublicKey` to get a secret shared between the two parties.
/// # Arguments
///  * `private_key` - The user's `PrivateKey` obtained through `generate_keypair()`.
///  * `public_key` - The peer's `PublicKey`.
/// # Returns
/// Returns a shared secret in the form of a `Vec<u8>`, which can then be used
///     as an encryption key between the two parties.
/// # Example
/// ```rust
/// use std::convert::TryFrom as _;
/// use devolutions_crypto::key::{PublicKey, PrivateKey, generate_keypair, mix_key_exchange, KeyVersion};
/// # fn send_key_to_alice(_: &[u8]) {}
/// # fn send_key_to_bob(_: &[u8]) {}
/// # fn receive_key_from_alice() {}
/// # fn receive_key_from_bob() {}
///
/// // This happens on Bob's side.
/// let bob_keypair = generate_keypair(KeyVersion::Latest);
/// let bob_serialized_pub: Vec<u8> = bob_keypair.public_key.into();
///
/// send_key_to_alice(&bob_serialized_pub);
///
/// // This happens on Alice's side.
/// let alice_keypair = generate_keypair(KeyVersion::Latest);
/// let alice_serialized_pub: Vec<u8> = alice_keypair.public_key.into();
///
/// send_key_to_bob(&alice_serialized_pub);
///
/// // Bob can now generate the shared secret.
/// let alice_received_serialized_pub = receive_key_from_alice();
/// # let alice_received_serialized_pub = alice_serialized_pub;
/// let alice_received_pub = PublicKey::try_from(alice_received_serialized_pub.as_slice()).unwrap();
///
/// let bob_shared = mix_key_exchange(&bob_keypair.private_key, &alice_received_pub).unwrap();
///
/// // Alice can now generate the shared secret
/// let bob_received_serialized_pub = receive_key_from_bob();
/// # let bob_received_serialized_pub = bob_serialized_pub;
/// let bob_received_pub = PublicKey::try_from(bob_received_serialized_pub.as_slice()).unwrap();
///
/// let alice_shared = mix_key_exchange(&alice_keypair.private_key, &bob_received_pub).unwrap();
///
/// // They now have a shared secret!
/// assert_eq!(bob_shared, alice_shared);
/// ```
pub fn mix_key_exchange(private_key: &PrivateKey, public_key: &PublicKey) -> Result<Vec<u8>> {
    Ok(match (&private_key.payload, &public_key.payload) {
        (PrivateKeyPayload::V1(private_key), PublicKeyPayload::V1(public_key)) => {
            key_v1::mix_key_exchange(private_key, public_key)
        } //_ => Err(DevoCryptoError::InvalidDataType),
    })
}

fn keypair_headers(version: KeyVersion) -> (Header<PrivateKey>, Header<PublicKey>) {
    let mut private_header = Header::default();
    let mut public_header = Header::default();

    match version {
        KeyVersion::V1 | KeyVersion::Latest => {
            private_header.version = KeyVersion::V1;
            public_header.version = KeyVersion::V1;
        }
    }

    (private_header, public_header)
}

impl From<PublicKey> for Vec<u8> {
    /// Serialize the structure into a `Vec<u8>`, for storage, transmission or use in another language.
    fn from(data: PublicKey) -> Self {
        let mut header: Self = data.header.into();
        let mut payload: Self = data.payload.into();
        header.append(&mut payload);
        header
    }
}

impl TryFrom<&[u8]> for PublicKey {
    type Error = Error;

    /// Parses the data. Can return an Error of the data is invalid or unrecognized.
    fn try_from(data: &[u8]) -> Result<Self> {
        if data.len() < Header::len() {
            return Err(Error::InvalidLength);
        };

        let header = Header::try_from(&data[0..Header::len()])?;

        if header.data_subtype != KeySubtype::Public {
            return Err(Error::InvalidDataType);
        }

        let payload = match header.version {
            KeyVersion::V1 => PublicKeyPayload::V1(KeyV1Public::try_from(&data[Header::len()..])?),
            _ => return Err(Error::UnknownVersion),
        };

        Ok(Self { header, payload })
    }
}

impl From<PrivateKey> for Vec<u8> {
    /// Serialize the structure into a `Vec<u8>`, for storage, transmission or use in another language.
    fn from(data: PrivateKey) -> Self {
        let mut header: Self = data.header.into();
        let mut payload: Self = data.payload.into();
        header.append(&mut payload);
        header
    }
}

impl TryFrom<&[u8]> for PrivateKey {
    type Error = Error;

    /// Parses the data. Can return an Error of the data is invalid or unrecognized.
    fn try_from(data: &[u8]) -> Result<Self> {
        if data.len() < Header::len() {
            return Err(Error::InvalidLength);
        };

        let header = Header::try_from(&data[0..Header::len()])?;

        if header.data_subtype != KeySubtype::Private {
            return Err(Error::InvalidDataType);
        }

        let payload = match header.version {
            KeyVersion::V1 => {
                PrivateKeyPayload::V1(KeyV1Private::try_from(&data[Header::len()..])?)
            }
            _ => return Err(Error::UnknownVersion),
        };

        Ok(Self { header, payload })
    }
}

impl From<PrivateKeyPayload> for Vec<u8> {
    fn from(data: PrivateKeyPayload) -> Self {
        match data {
            PrivateKeyPayload::V1(x) => x.into(),
        }
    }
}

impl From<PublicKeyPayload> for Vec<u8> {
    fn from(data: PublicKeyPayload) -> Self {
        match data {
            PublicKeyPayload::V1(x) => x.into(),
        }
    }
}

impl From<&PublicKey> for x25519_dalek::PublicKey {
    fn from(data: &PublicKey) -> Self {
        match &data.payload {
            PublicKeyPayload::V1(x) => Self::from(x),
            //_ => Err(DevoCryptoError::InvalidDataType),
        }
    }
}

impl From<&PrivateKey> for x25519_dalek::StaticSecret {
    fn from(data: &PrivateKey) -> Self {
        match &data.payload {
            PrivateKeyPayload::V1(x) => Self::from(x),
            //_ => Err(DevoCryptoError::InvalidDataType),
        }
    }
}

#[test]
fn ecdh_test() {
    let bob_keypair = generate_keypair(KeyVersion::Latest);
    let alice_keypair = generate_keypair(KeyVersion::Latest);

    let bob_shared = mix_key_exchange(&bob_keypair.private_key, &alice_keypair.public_key).unwrap();
    let alice_shared =
        mix_key_exchange(&alice_keypair.private_key, &bob_keypair.public_key).unwrap();

    assert_eq!(bob_shared, alice_shared);
}