1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
//! Module for dealing with wrapped keys and key exchange.
//!
//! For now, this module only deal with keypairs, as the symmetric keys are not wrapped yet.
//!
//! ### Generation/Derivation
//!
//! Using `generate_keypair` will generate a random keypair.
//!
//! Asymmetric keys have two uses. They can be used to [encrypt and decrypt data](##asymmetric) and to perform a [key exchange](#key-exchange).
//!
//! #### `generate_keypair`
//! ```rust
//! use devolutions_crypto::key::{generate_keypair, KeyVersion, KeyPair};
//!
//! let keypair: KeyPair = generate_keypair(KeyVersion::Latest);
//! ```
//!
//! ### Key Exchange
//!
//! The goal of using a key exchange is to get a shared secret key between
//! two parties without making it possible for users listening on the conversation
//! to guess that shared key.
//! 1. Alice and Bob generates a `KeyPair` each.
//! 2. Alice and Bob exchanges their `PublicKey`.
//! 3. Alice mix her `PrivateKey` with Bob's `PublicKey`. This gives her the shared key.
//! 4. Bob mixes his `PrivateKey` with Alice's `PublicKey`. This gives him the shared key.
//! 5. Both Bob and Alice has the same shared key, which they can use for symmetric encryption for further communications.
//!
//! ```rust
//! use devolutions_crypto::key::{generate_keypair, mix_key_exchange, KeyVersion, KeyPair};
//!
//! let bob_keypair: KeyPair = generate_keypair(KeyVersion::Latest);
//! let alice_keypair: KeyPair = generate_keypair(KeyVersion::Latest);
//!
//! let bob_shared = mix_key_exchange(&bob_keypair.private_key, &alice_keypair.public_key).expect("key exchange should not fail");
//!
//! let alice_shared = mix_key_exchange(&alice_keypair.private_key, &bob_keypair.public_key).expect("key exchange should not fail");
//!
//! // They now have a shared secret!
//! assert_eq!(bob_shared, alice_shared);
//! ```
mod key_v1;
use super::DataType;
use super::Error;
use super::Header;
use super::HeaderType;
use super::KeySubtype;
pub use super::KeyVersion;
use super::Result;
use key_v1::{KeyV1Private, KeyV1Public};
use std::convert::TryFrom;
#[cfg(feature = "fuzz")]
use arbitrary::Arbitrary;
#[cfg(feature = "wbindgen")]
use wasm_bindgen::prelude::*;
/// An asymmetric keypair.
#[derive(Clone)]
pub struct KeyPair {
/// The private key of this pair.
pub private_key: PrivateKey,
/// The public key of this pair.
pub public_key: PublicKey,
}
/// A public key. This key can be sent in clear on unsecured channels and stored publicly.
#[cfg_attr(feature = "wbindgen", wasm_bindgen(inspectable))]
#[cfg_attr(feature = "fuzz", derive(Arbitrary))]
#[derive(Clone, Debug)]
pub struct PublicKey {
pub(crate) header: Header<PublicKey>,
payload: PublicKeyPayload,
}
/// A private key. This key should never be sent over an insecure channel or stored unsecurely.
#[cfg_attr(feature = "wbindgen", wasm_bindgen(inspectable))]
#[cfg_attr(feature = "fuzz", derive(Arbitrary))]
#[derive(Clone, Debug)]
pub struct PrivateKey {
pub(crate) header: Header<PrivateKey>,
payload: PrivateKeyPayload,
}
impl HeaderType for PublicKey {
type Version = KeyVersion;
type Subtype = KeySubtype;
fn data_type() -> DataType {
DataType::Key
}
fn subtype() -> Self::Subtype {
KeySubtype::Public
}
}
impl HeaderType for PrivateKey {
type Version = KeyVersion;
type Subtype = KeySubtype;
fn data_type() -> DataType {
DataType::Key
}
fn subtype() -> Self::Subtype {
KeySubtype::Private
}
}
#[derive(Clone, Debug)]
#[cfg_attr(feature = "fuzz", derive(Arbitrary))]
enum PrivateKeyPayload {
V1(KeyV1Private),
}
#[derive(Clone, Debug)]
#[cfg_attr(feature = "fuzz", derive(Arbitrary))]
enum PublicKeyPayload {
V1(KeyV1Public),
}
/// Generates a `KeyPair` to use in a key exchange or to encrypt data.
/// # Arguments
/// * `version` - Version of the key scheme to use. Use `KeyVersion::Latest` if you're not dealing with shared data.
/// # Returns
/// Returns a `KeyPair` containing the private key and the public key.
/// # Example
/// ```rust
/// use devolutions_crypto::key::{generate_keypair, KeyVersion};
///
/// let keypair = generate_keypair(KeyVersion::Latest);
/// ```
pub fn generate_keypair(version: KeyVersion) -> KeyPair {
let (private_header, public_header) = keypair_headers(version);
let (private_key, public_key) = match version {
KeyVersion::V1 | KeyVersion::Latest => {
let keypair = key_v1::generate_keypair();
(
PrivateKeyPayload::V1(keypair.private_key),
PublicKeyPayload::V1(keypair.public_key),
)
}
};
KeyPair {
private_key: PrivateKey {
header: private_header,
payload: private_key,
},
public_key: PublicKey {
header: public_header,
payload: public_key,
},
}
}
/// Mix a `PrivateKey` with another client `PublicKey` to get a secret shared between the two parties.
/// # Arguments
/// * `private_key` - The user's `PrivateKey` obtained through `generate_keypair()`.
/// * `public_key` - The peer's `PublicKey`.
/// # Returns
/// Returns a shared secret in the form of a `Vec<u8>`, which can then be used
/// as an encryption key between the two parties.
/// # Example
/// ```rust
/// use std::convert::TryFrom as _;
/// use devolutions_crypto::key::{PublicKey, PrivateKey, generate_keypair, mix_key_exchange, KeyVersion};
/// # fn send_key_to_alice(_: &[u8]) {}
/// # fn send_key_to_bob(_: &[u8]) {}
/// # fn receive_key_from_alice() {}
/// # fn receive_key_from_bob() {}
///
/// // This happens on Bob's side.
/// let bob_keypair = generate_keypair(KeyVersion::Latest);
/// let bob_serialized_pub: Vec<u8> = bob_keypair.public_key.into();
///
/// send_key_to_alice(&bob_serialized_pub);
///
/// // This happens on Alice's side.
/// let alice_keypair = generate_keypair(KeyVersion::Latest);
/// let alice_serialized_pub: Vec<u8> = alice_keypair.public_key.into();
///
/// send_key_to_bob(&alice_serialized_pub);
///
/// // Bob can now generate the shared secret.
/// let alice_received_serialized_pub = receive_key_from_alice();
/// # let alice_received_serialized_pub = alice_serialized_pub;
/// let alice_received_pub = PublicKey::try_from(alice_received_serialized_pub.as_slice()).unwrap();
///
/// let bob_shared = mix_key_exchange(&bob_keypair.private_key, &alice_received_pub).unwrap();
///
/// // Alice can now generate the shared secret
/// let bob_received_serialized_pub = receive_key_from_bob();
/// # let bob_received_serialized_pub = bob_serialized_pub;
/// let bob_received_pub = PublicKey::try_from(bob_received_serialized_pub.as_slice()).unwrap();
///
/// let alice_shared = mix_key_exchange(&alice_keypair.private_key, &bob_received_pub).unwrap();
///
/// // They now have a shared secret!
/// assert_eq!(bob_shared, alice_shared);
/// ```
pub fn mix_key_exchange(private_key: &PrivateKey, public_key: &PublicKey) -> Result<Vec<u8>> {
Ok(match (&private_key.payload, &public_key.payload) {
(PrivateKeyPayload::V1(private_key), PublicKeyPayload::V1(public_key)) => {
key_v1::mix_key_exchange(private_key, public_key)
} //_ => Err(DevoCryptoError::InvalidDataType),
})
}
fn keypair_headers(version: KeyVersion) -> (Header<PrivateKey>, Header<PublicKey>) {
let mut private_header = Header::default();
let mut public_header = Header::default();
match version {
KeyVersion::V1 | KeyVersion::Latest => {
private_header.version = KeyVersion::V1;
public_header.version = KeyVersion::V1;
}
}
(private_header, public_header)
}
impl From<PublicKey> for Vec<u8> {
/// Serialize the structure into a `Vec<u8>`, for storage, transmission or use in another language.
fn from(data: PublicKey) -> Self {
let mut header: Self = data.header.into();
let mut payload: Self = data.payload.into();
header.append(&mut payload);
header
}
}
impl TryFrom<&[u8]> for PublicKey {
type Error = Error;
/// Parses the data. Can return an Error of the data is invalid or unrecognized.
fn try_from(data: &[u8]) -> Result<Self> {
if data.len() < Header::len() {
return Err(Error::InvalidLength);
};
let header = Header::try_from(&data[0..Header::len()])?;
if header.data_subtype != KeySubtype::Public {
return Err(Error::InvalidDataType);
}
let payload = match header.version {
KeyVersion::V1 => PublicKeyPayload::V1(KeyV1Public::try_from(&data[Header::len()..])?),
_ => return Err(Error::UnknownVersion),
};
Ok(Self { header, payload })
}
}
impl From<PrivateKey> for Vec<u8> {
/// Serialize the structure into a `Vec<u8>`, for storage, transmission or use in another language.
fn from(data: PrivateKey) -> Self {
let mut header: Self = data.header.into();
let mut payload: Self = data.payload.into();
header.append(&mut payload);
header
}
}
impl TryFrom<&[u8]> for PrivateKey {
type Error = Error;
/// Parses the data. Can return an Error of the data is invalid or unrecognized.
fn try_from(data: &[u8]) -> Result<Self> {
if data.len() < Header::len() {
return Err(Error::InvalidLength);
};
let header = Header::try_from(&data[0..Header::len()])?;
if header.data_subtype != KeySubtype::Private {
return Err(Error::InvalidDataType);
}
let payload = match header.version {
KeyVersion::V1 => {
PrivateKeyPayload::V1(KeyV1Private::try_from(&data[Header::len()..])?)
}
_ => return Err(Error::UnknownVersion),
};
Ok(Self { header, payload })
}
}
impl From<PrivateKeyPayload> for Vec<u8> {
fn from(data: PrivateKeyPayload) -> Self {
match data {
PrivateKeyPayload::V1(x) => x.into(),
}
}
}
impl From<PublicKeyPayload> for Vec<u8> {
fn from(data: PublicKeyPayload) -> Self {
match data {
PublicKeyPayload::V1(x) => x.into(),
}
}
}
impl From<&PublicKey> for x25519_dalek::PublicKey {
fn from(data: &PublicKey) -> Self {
match &data.payload {
PublicKeyPayload::V1(x) => Self::from(x),
//_ => Err(DevoCryptoError::InvalidDataType),
}
}
}
impl From<&PrivateKey> for x25519_dalek::StaticSecret {
fn from(data: &PrivateKey) -> Self {
match &data.payload {
PrivateKeyPayload::V1(x) => Self::from(x),
//_ => Err(DevoCryptoError::InvalidDataType),
}
}
}
#[test]
fn ecdh_test() {
let bob_keypair = generate_keypair(KeyVersion::Latest);
let alice_keypair = generate_keypair(KeyVersion::Latest);
let bob_shared = mix_key_exchange(&bob_keypair.private_key, &alice_keypair.public_key).unwrap();
let alice_shared =
mix_key_exchange(&alice_keypair.private_key, &bob_keypair.public_key).unwrap();
assert_eq!(bob_shared, alice_shared);
}