1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
//! Module for symmetric/asymmetric encryption/decryption.
//!
//! This module contains everything related to encryption. You can use it to encrypt and decrypt data using either a shared key of a keypair.
//! Either way, the encryption will give you a `Ciphertext`, which has a method to decrypt it.
//!
//! ### Symmetric
//!
//! ```rust
//! use devolutions_crypto::utils::generate_key;
//! use devolutions_crypto::ciphertext::{ encrypt, CiphertextVersion, Ciphertext };
//!
//! let key: Vec<u8> = generate_key(32);
//!
//! let data = b"somesecretdata";
//!
//! let encrypted_data: Ciphertext = encrypt(data, &key, CiphertextVersion::Latest).expect("encryption shouldn't fail");
//!
//! let decrypted_data = encrypted_data.decrypt(&key).expect("The decryption shouldn't fail");
//!
//! assert_eq!(decrypted_data, data);
//! ```
//!
//! ### Asymmetric
//! Here, you will need a `PublicKey` to encrypt data and the corresponding
//! `PrivateKey` to decrypt it. You can generate them by using `generate_keypair`
//! in the [Key module](#key).
//!
//! ```rust
//! use devolutions_crypto::key::{generate_keypair, KeyVersion, KeyPair};
//! use devolutions_crypto::ciphertext::{ encrypt_asymmetric, CiphertextVersion, Ciphertext };
//!
//! let keypair: KeyPair = generate_keypair(KeyVersion::Latest);
//!
//! let data = b"somesecretdata";
//!
//! let encrypted_data: Ciphertext = encrypt_asymmetric(data, &keypair.public_key, CiphertextVersion::Latest).expect("encryption shouldn't fail");
//!
//! let decrypted_data = encrypted_data.decrypt_asymmetric(&keypair.private_key).expect("The decryption shouldn't fail");
//!
//! assert_eq!(decrypted_data, data);
//! ```

mod ciphertext_v1;
mod ciphertext_v2;

use super::CiphertextSubtype;
pub use super::CiphertextVersion;
use super::DataType;
use super::Error;
use super::Header;
use super::HeaderType;
use super::Result;

use super::key::{PrivateKey, PublicKey};

use ciphertext_v1::CiphertextV1;
use ciphertext_v2::{CiphertextV2Asymmetric, CiphertextV2Symmetric};

use std::convert::TryFrom;

#[cfg(feature = "fuzz")]
use arbitrary::Arbitrary;

/// A versionned ciphertext. Can be either symmetric or asymmetric.
#[derive(Clone, Debug)]
#[cfg_attr(feature = "fuzz", derive(Arbitrary))]
pub struct Ciphertext {
    pub(crate) header: Header<Ciphertext>,
    payload: CiphertextPayload,
}

impl HeaderType for Ciphertext {
    type Version = CiphertextVersion;
    type Subtype = CiphertextSubtype;

    fn data_type() -> DataType {
        DataType::Ciphertext
    }
}

#[derive(Clone, Debug)]
#[cfg_attr(feature = "fuzz", derive(Arbitrary))]
enum CiphertextPayload {
    V1(CiphertextV1),
    V2Symmetric(CiphertextV2Symmetric),
    V2Asymmetric(CiphertextV2Asymmetric),
}

/// Returns an `Ciphertext` from cleartext data and a key.
/// # Arguments
///  * `data` - The data to encrypt.
///  * `key` - The key to use. The recommended size is 32 bytes.
///  * `version` - Version of the library to encrypt with. Use `CiphertTextVersion::Latest` if you're not dealing with shared data.
/// # Returns
/// Returns a `Ciphertext` containing the encrypted data.
/// # Example
/// ```rust
/// use devolutions_crypto::ciphertext::{ encrypt, CiphertextVersion };
///
/// let data = b"somesecretdata";
/// let key = b"somesecretkey";
///
/// let encrypted_data = encrypt(data, key, CiphertextVersion::Latest).unwrap();
/// ```
pub fn encrypt(data: &[u8], key: &[u8], version: CiphertextVersion) -> Result<Ciphertext> {
    let mut header = Header::default();

    header.data_subtype = CiphertextSubtype::Symmetric;

    let payload = match version {
        CiphertextVersion::V1 => {
            header.version = CiphertextVersion::V1;
            CiphertextPayload::V1(CiphertextV1::encrypt(data, key, &header)?)
        }
        CiphertextVersion::V2 | CiphertextVersion::Latest => {
            header.version = CiphertextVersion::V2;
            CiphertextPayload::V2Symmetric(CiphertextV2Symmetric::encrypt(data, key, &header)?)
        } //_ => return Err(DevoCryptoError::UnknownVersion),
    };

    Ok(Ciphertext { header, payload })
}

/// Returns an `Ciphertext` from cleartext data and a `PublicKey`.
/// You will need the corresponding `PrivateKey` to decrypt it.
/// # Arguments
///  * `data` - The data to encrypt.
///  * `public_key` - The `PublicKey` to use. Use `generate_keypair` to generate a keypair.
///  * `version` - Version of the library to encrypt with. Use `CiphertTextVersion::Latest` if you're not dealing with shared data.
/// # Returns
/// Returns a `Ciphertext` containing the encrypted data.
/// # Example
/// ```rust
/// use devolutions_crypto::ciphertext::{ encrypt_asymmetric, CiphertextVersion };
/// use devolutions_crypto::key::{ generate_keypair, KeyVersion };
///
/// let data = b"somesecretdata";
/// let keypair = generate_keypair(KeyVersion::Latest);
///
/// let encrypted_data = encrypt_asymmetric(data, &keypair.public_key, CiphertextVersion::Latest).unwrap();
/// ```
pub fn encrypt_asymmetric(
    data: &[u8],
    public_key: &PublicKey,
    version: CiphertextVersion,
) -> Result<Ciphertext> {
    let mut header = Header::default();

    header.data_subtype = CiphertextSubtype::Asymmetric;

    let payload = match version {
        CiphertextVersion::V2 | CiphertextVersion::Latest => {
            header.version = CiphertextVersion::V2;
            CiphertextPayload::V2Asymmetric(CiphertextV2Asymmetric::encrypt(
                data, public_key, &header,
            )?)
        }
        _ => return Err(Error::UnknownVersion),
    };

    Ok(Ciphertext { header, payload })
}

impl Ciphertext {
    /// Decrypt the data blob using a key.
    /// # Arguments
    ///  * `key` - Key to use. The recommended size is 32 bytes.
    /// # Returns
    /// Returns the decrypted data.
    /// # Example
    /// ```rust
    /// use devolutions_crypto::ciphertext::{ encrypt, CiphertextVersion};
    ///
    /// let data = b"somesecretdata";
    /// let key = b"somesecretkey";
    ///
    /// let encrypted_data = encrypt(data, key, CiphertextVersion::Latest).unwrap();
    /// let decrypted_data = encrypted_data.decrypt(key).unwrap();
    ///
    /// assert_eq!(data.to_vec(), decrypted_data);
    ///```
    pub fn decrypt(&self, key: &[u8]) -> Result<Vec<u8>> {
        match &self.payload {
            CiphertextPayload::V1(x) => x.decrypt(key, &self.header),
            CiphertextPayload::V2Symmetric(x) => x.decrypt(key, &self.header),
            _ => Err(Error::InvalidDataType),
        }
    }

    /// Decrypt the data blob using a `PrivateKey`.
    /// # Arguments
    ///  * `private_key` - Key to use. Must be the one in the same keypair as the `PublicKey` used for encryption.
    /// # Returns
    /// Returns the decrypted data.
    /// # Example
    /// ```rust
    /// use devolutions_crypto::ciphertext::{ encrypt_asymmetric, CiphertextVersion };
    /// use devolutions_crypto::key::{ generate_keypair, KeyVersion };
    ///
    /// let data = b"somesecretdata";
    /// let keypair = generate_keypair(KeyVersion::Latest);
    ///
    /// let encrypted_data = encrypt_asymmetric(data, &keypair.public_key, CiphertextVersion::Latest).unwrap();
    /// let decrypted_data = encrypted_data.decrypt_asymmetric(&keypair.private_key).unwrap();
    ///
    /// assert_eq!(decrypted_data, data);
    ///```
    pub fn decrypt_asymmetric(&self, private_key: &PrivateKey) -> Result<Vec<u8>> {
        match &self.payload {
            CiphertextPayload::V2Asymmetric(x) => x.decrypt(private_key, &self.header),
            CiphertextPayload::V1(_) => Err(Error::UnknownVersion),
            _ => Err(Error::InvalidDataType),
        }
    }
}

impl From<Ciphertext> for Vec<u8> {
    /// Serialize the structure into a `Vec<u8>`, for storage, transmission or use in another language.
    fn from(data: Ciphertext) -> Self {
        let mut header: Self = data.header.into();
        let mut payload: Self = data.payload.into();
        header.append(&mut payload);
        header
    }
}

impl TryFrom<&[u8]> for Ciphertext {
    type Error = Error;

    /// Parses the data. Can return an Error of the data is invalid or unrecognized.
    fn try_from(data: &[u8]) -> Result<Self> {
        if data.len() < Header::len() {
            return Err(Error::InvalidLength);
        };

        let header = Header::try_from(&data[0..Header::len()])?;

        let payload = match header.version {
            CiphertextVersion::V1 => {
                CiphertextPayload::V1(CiphertextV1::try_from(&data[Header::len()..])?)
            }
            CiphertextVersion::V2 => match header.data_subtype {
                CiphertextSubtype::Symmetric | CiphertextSubtype::None => {
                    CiphertextPayload::V2Symmetric(CiphertextV2Symmetric::try_from(
                        &data[Header::len()..],
                    )?)
                }
                CiphertextSubtype::Asymmetric => CiphertextPayload::V2Asymmetric(
                    CiphertextV2Asymmetric::try_from(&data[Header::len()..])?,
                ),
            },
            _ => return Err(Error::UnknownVersion),
        };

        Ok(Self { header, payload })
    }
}

impl From<CiphertextPayload> for Vec<u8> {
    fn from(data: CiphertextPayload) -> Self {
        match data {
            CiphertextPayload::V1(x) => x.into(),
            CiphertextPayload::V2Symmetric(x) => x.into(),
            CiphertextPayload::V2Asymmetric(x) => x.into(),
        }
    }
}

#[test]
fn encrypt_decrypt_test() {
    let key = "0123456789abcdefghijkl".as_bytes();
    let data = "This is a very complex string of character that we need to encrypt".as_bytes();

    let encrypted = encrypt(data, key, CiphertextVersion::Latest).unwrap();

    let encrypted: Vec<u8> = encrypted.into();

    let encrypted = Ciphertext::try_from(encrypted.as_slice()).unwrap();
    let decrypted = encrypted.decrypt(key).unwrap();

    assert_eq!(decrypted, data);
}

#[test]
fn encrypt_decrypt_v1_test() {
    let key = "0123456789abcdefghijkl".as_bytes();
    let data = "This is a very complex string of character that we need to encrypt".as_bytes();

    let encrypted = encrypt(data, key, CiphertextVersion::V1).unwrap();

    assert_eq!(encrypted.header.version, CiphertextVersion::V1);
    let encrypted: Vec<u8> = encrypted.into();

    let encrypted = Ciphertext::try_from(encrypted.as_slice()).unwrap();
    let decrypted = encrypted.decrypt(key).unwrap();

    assert_eq!(decrypted, data);
}

#[test]
fn encrypt_decrypt_v2_test() {
    let key = "0123456789abcdefghijkl".as_bytes();
    let data = "This is a very complex string of character that we need to encrypt".as_bytes();

    let encrypted = encrypt(data, key, CiphertextVersion::V2).unwrap();

    assert_eq!(encrypted.header.version, CiphertextVersion::V2);
    let encrypted: Vec<u8> = encrypted.into();

    let encrypted = Ciphertext::try_from(encrypted.as_slice()).unwrap();
    let decrypted = encrypted.decrypt(key).unwrap();

    assert_eq!(decrypted, data);
}

#[test]
fn asymmetric_test() {
    use super::key::{generate_keypair, KeyVersion};

    let test_plaintext = b"this is a test data";

    let keypair = generate_keypair(KeyVersion::Latest);

    let encrypted_data =
        encrypt_asymmetric(test_plaintext, &keypair.public_key, CiphertextVersion::V2).unwrap();

    let encrypted_data_vec: Vec<u8> = encrypted_data.into();

    assert_ne!(encrypted_data_vec.len(), 0);

    let encrypted_data = Ciphertext::try_from(encrypted_data_vec.as_slice()).unwrap();

    let decrypted_data = encrypted_data
        .decrypt_asymmetric(&keypair.private_key)
        .unwrap();

    assert_eq!(decrypted_data, test_plaintext);
}

#[test]
fn asymmetric_test_v2() {
    use super::key::{generate_keypair, KeyVersion};

    let test_plaintext = b"this is a test data";

    let keypair = generate_keypair(KeyVersion::V1);

    let encrypted_data =
        encrypt_asymmetric(test_plaintext, &keypair.public_key, CiphertextVersion::V2).unwrap();

    assert_eq!(encrypted_data.header.version, CiphertextVersion::V2);
    let encrypted_data_vec: Vec<u8> = encrypted_data.into();

    assert_ne!(encrypted_data_vec.len(), 0);

    let encrypted_data = Ciphertext::try_from(encrypted_data_vec.as_slice()).unwrap();

    let decrypted_data = encrypted_data
        .decrypt_asymmetric(&keypair.private_key)
        .unwrap();

    assert_eq!(decrypted_data, test_plaintext);
}