1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
use core::fmt::Debug;

/// Trait for reading and writing registers
pub trait RegisterInterface {
    /// The type representation of the address
    type Address;
    /// The type representation of the errors the interface can give
    type InterfaceError: Debug;

    // To consider: Right now we're using byte arrays for interfacing with registers.
    // This could also be [`bitarray`](https://crates.io/crates/bitarray).
    // Pro: Better support for i.e. 7-bit registers.
    // Con: More elaborate to work with in most cases.

    /// Reads the register at the given address and puts the data in the value parameter
    fn read_register(
        &mut self,
        address: Self::Address,
        value: &mut [u8],
    ) -> Result<(), Self::InterfaceError>;

    /// Writes the value to the register at the given address
    fn write_register(
        &mut self,
        address: Self::Address,
        value: &[u8],
    ) -> Result<(), Self::InterfaceError>;
}

/// Defines a register interface for a low level device.
///
/// Format:
///
/// - `AccessSpecifier` = `WO` (write-only) | `RO` (read-only) | `RW` (read-write)
/// - `FieldType` = any int type
/// - `SomeType` = any type that implements Into<FieldType> the field can be written and TryFrom<FieldType> if the field can be read
/// - `RegisterBitOrder` = optional (can be left out. default = LSB) or `LSB` (Least Significant Bit) | `MSB` (Most Significant Bit) =>
/// This follows uses the ordering semantics of [bitvec::slice::BitSlice] when used with [bitvec::field::BitField].
/// - `FieldBitOrder` = optional (can be left out. default = BE) or `:LE` (Little Endian) | `:BE` (Big Endian) | `:NE` (Native Endian) =>
/// Specifies how the bits are read. Native Endian specifies that the CPU Architecture decides if it's LE or BE.
/// This only makes sense to specify for int types that have more than 1 byte.
///
/// ```ignore
/// implement_registers!(
///     /// Possible docs for register set
///     DeviceName.register_set_name<RegisterAddressType> = {
///         /// Possible docs for register
///         register_name(AccessSpecifier, register_address, register_size) = {
///             /// Possible docs for register field
///             field_name: FieldType = AccessSpecifier inclusive_start_bit_index..exclusive_end_bit_index,
///             /// This field has a conversion and uses an inclusive range
///             field_name: FieldType as SomeType = AccessSpecifier inclusive_start_bit_index..=inclusive_end_bit_index,
///             /// This field is read with a specified endianness
///             field_name: FieldType:FieldBitOrder = AccessSpecifier inclusive_start_bit_index..exclusive_end_bit_index,
///         },
///         /// This register is present at multiple addresses and has a specified register bit order
///         register_name(AccessSpecifier, [register_address, register_address, register_address], register_size) = RegisterBitOrder {
///
///         },
///     }
/// );
/// ```
///
/// See the examples folder for actual examples
///
#[macro_export]
macro_rules! implement_registers {
    (
        $(#[$register_set_doc:meta])*
        $device_name:ident.$register_set_name:ident<$register_address_type:ty> = {
            $(
                $(#[doc=$register_doc:literal])*
                $(#[generate($($generate_list:tt)*)])?
                $register_name:ident($register_access_specifier:tt, $register_address:tt, $register_size:expr) = $($register_bit_order:ident)? {
                    $(
                        $(#[$field_doc:meta])*
                        $field_name:ident: $field_type:ty $(:$field_bit_order:ident)? $(as $field_convert_type:ty)? = $field_access_specifier:tt $field_bit_range:expr
                    ),* $(,)?
                }
            ),* $(,)?
        }
    ) => {
        $(#[$register_set_doc])*
        pub mod $register_set_name {
            use super::*;
            use device_driver::ll::register::RegisterInterface;
            use device_driver::ll::{LowLevelDevice, ConversionError};
            use device_driver::_implement_register;
            use device_driver::_implement_register_field;
            use device_driver::_get_bit_order;
            use device_driver::_load_with_endianness;
            use device_driver::_store_with_endianness;
            use device_driver::generate_if_debug_keyword;

            impl<'a, I: HardwareInterface> $device_name<I>
            where
                I: 'a + RegisterInterface<Address = $register_address_type>,
            {
                $(#[$register_set_doc])*
                pub fn $register_set_name(&'a mut self) -> RegisterSet<'a, I> {
                    RegisterSet::new(&mut self.interface)
                }
            }

            /// A struct that borrows the interface from the device.
            /// It implements the read and/or write functionality for the registers.
            pub struct RegAccessor<'a, I, R, W>
            where
                I: 'a + RegisterInterface<Address = $register_address_type>,
            {
                interface: &'a mut I,
                phantom: core::marker::PhantomData<(R, W)>,
            }

            impl<'a, I, R, W> RegAccessor<'a, I, R, W>
            where
                I: 'a + RegisterInterface<Address = $register_address_type>,
            {
                fn new(interface: &'a mut I) -> Self {
                    Self {
                        interface,
                        phantom: Default::default(),
                    }
                }
            }

            /// A struct containing all the register definitions
            pub struct RegisterSet<'a, I>
            where
                I: 'a + RegisterInterface<Address = $register_address_type>,
            {
                interface: &'a mut I,
            }

            impl<'a, I> RegisterSet<'a, I>
            where
                I: 'a + RegisterInterface<Address = $register_address_type>,
            {
                fn new(interface: &'a mut I) -> Self {
                    Self { interface }
                }

                $(
                    $(#[doc = $register_doc])*
                    pub fn $register_name(&'a mut self) -> RegAccessor<'a, I, $register_name::R, $register_name::W> {
                        RegAccessor::new(&mut self.interface)
                    }
                )*
            }

            $(
                $(#[doc = $register_doc])*
                pub mod $register_name {
                    use super::*;

                    _implement_register!(
                        #[generate($($($generate_list)*)*)]
                        ($register_name, $register_access_specifier, $register_address, $register_size, $register_address_type, _get_bit_order!($($register_bit_order)*)) {
                            $(
                                $(#[$field_doc])*
                                $field_name: $field_type $(:$field_bit_order)? $(as $field_convert_type)? = $field_access_specifier $field_bit_range
                            ),*
                        }
                    );
                }
            )*
        }
    };
}

/// Internal macro. Do not use.
#[macro_export]
#[doc(hidden)]
macro_rules! _implement_register {
    // This arm implements the array read part (but not read-only)
    (
        #[generate($($generate_list:tt)*)]
        ($register_name:ident, @R, [$($register_address:expr),* $(,)?], $register_size:expr, $register_address_type:ty, $register_bit_order:ty) {
            $(
                $(#[$field_doc:meta])*
                $field_name:ident: $field_type:ty $(:$field_bit_order:ident)? $(as $field_convert_type:ty)? = $field_access_specifier:tt $field_bit_range:expr
            ),*
        }
    ) => {
        /// Reader struct for the register
        #[derive(Copy, Clone)]
        pub struct R([u8; $register_size]);

        impl R {
            /// Create a zeroed reader
            pub const fn zero() -> Self {
                Self([0; $register_size])
            }

            /// Creates a reader with the given value.
            ///
            /// Be careful because you may inadvertently set invalid values
            pub const fn from_raw(value: [u8; $register_size]) -> Self {
                Self(value)
            }

            /// Gets the raw value of the writer.
            pub const fn get_raw(&self) -> [u8; $register_size] {
                self.0
            }

            $(
                _implement_register_field!(@R, $register_bit_order, $(#[$field_doc])* $field_name: $field_type $(:$field_bit_order)? $(as $field_convert_type)? = $field_access_specifier $field_bit_range);
            )*
        }

        generate_if_debug_keyword!(
            impl core::fmt::Debug for R {
                fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> Result<(), core::fmt::Error> {
                    f.debug_struct(concat!(stringify!($register_name), "::R"))
                        .field("raw", &device_driver::utils::SliceHexFormatter::new(&self.0))
                        $(
                            .field(stringify!($field_name), &self.$field_name())
                        )*
                        .finish()
                }
            },
            impl core::fmt::Debug for R {
                fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> Result<(), core::fmt::Error> {
                    f.debug_struct(concat!(stringify!($register_name), "::R"))
                        .field("raw", &device_driver::utils::SliceHexFormatter::new(&self.0))
                        .finish()
                }
            },
            $($generate_list)*
        );

        impl<'a, I> RegAccessor<'a, I, R, W>
        where
            I: RegisterInterface<Address = $register_address_type>,
        {
            /// Reads the register
            pub fn read_index(&mut self, index: usize) -> Result<R, I::InterfaceError> {
                let mut r = R::zero();
                let addresses = [$($register_address,)*];
                self.interface.read_register(addresses[index], &mut r.0)?;
                Ok(r)
            }
        }
    };
    // This arm implements the single read part (but not read-only)
    (
        #[generate($($generate_list:tt)*)]
        ($register_name:ident, @R, $register_address:expr, $register_size:expr, $register_address_type:ty, $register_bit_order:ty) {
            $(
                $(#[$field_doc:meta])*
                $field_name:ident: $field_type:ty $(:$field_bit_order:ident)? $(as $field_convert_type:ty)? = $field_access_specifier:tt $field_bit_range:expr
            ),*
        }
    ) => {
        /// Reader struct for the register
        #[derive(Copy, Clone)]
        pub struct R(pub [u8; $register_size]);

        impl R {
            /// Create a zeroed reader
            pub const fn zero() -> Self {
                Self([0; $register_size])
            }

            /// Creates a reader with the given value.
            ///
            /// Be careful because you may inadvertently set invalid values
            pub const fn from_raw(value: [u8; $register_size]) -> Self {
                Self(value)
            }

            /// Gets the raw value of the writer.
            pub const fn get_raw(&self) -> [u8; $register_size] {
                self.0
            }

            $(
                _implement_register_field!(@R, $register_bit_order, $(#[$field_doc])* $field_name: $field_type $(:$field_bit_order)? $(as $field_convert_type)? = $field_access_specifier $field_bit_range);
            )*
        }

        generate_if_debug_keyword!(
            impl core::fmt::Debug for R {
                fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> Result<(), core::fmt::Error> {
                    f.debug_struct(concat!(stringify!($register_name), "::R"))
                        .field("raw", &device_driver::utils::SliceHexFormatter::new(&self.0))
                        $(
                            .field(stringify!($field_name), &self.$field_name())
                        )*
                        .finish()
                }
            },
            impl core::fmt::Debug for R {
                fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> Result<(), core::fmt::Error> {
                    f.debug_struct(concat!(stringify!($register_name), "::R"))
                        .field("raw", &device_driver::utils::SliceHexFormatter::new(&self.0))
                        .finish()
                }
            },
            $($generate_list)*
        );

        impl<'a, I> RegAccessor<'a, I, R, W>
        where
            I: RegisterInterface<Address = $register_address_type>,
        {
            /// Reads the register
            pub fn read(&mut self) -> Result<R, I::InterfaceError> {
                let mut r = R::zero();
                self.interface.read_register($register_address, &mut r.0)?;
                Ok(r)
            }
        }
    };
    // This arm implements the array write part (but not write-only)
    (
        #[generate($($generate_list:tt)*)]
        ($register_name:ident, @W, [$($register_address:expr),* $(,)?], $register_size:expr, $register_address_type:ty, $register_bit_order:ty) {
            $(
                $(#[$field_doc:meta])*
                $field_name:ident: $field_type:ty $(:$field_bit_order:ident)? $(as $field_convert_type:ty)? = $field_access_specifier:tt $field_bit_range:expr
            ),*
        }
    ) => {
        /// Writer struct for the register
        #[derive(Debug, Copy, Clone)]
        pub struct W([u8; $register_size]);

        impl W {
            /// Create a zeroed writer
            pub const fn zero() -> Self {
                Self([0; $register_size])
            }

            /// Creates a writer with the given value.
            ///
            /// Be careful because you may inadvertently set invalid values
            pub const fn from_raw(value: [u8; $register_size]) -> Self {
                Self(value)
            }

            /// Sets the raw value of the writer.
            ///
            /// Be careful because you may inadvertently set invalid values
            pub const fn set_raw(self, value: [u8; $register_size]) -> Self {
                Self(value)
            }

            $(
                _implement_register_field!(@W, $register_bit_order, $(#[$field_doc])* $field_name: $field_type $(:$field_bit_order)? $(as $field_convert_type)? = $field_access_specifier $field_bit_range);
            )*
        }

        impl<'a, I> RegAccessor<'a, I, R, W>
        where
            I: RegisterInterface<Address = $register_address_type>,
        {
            /// Writes the value returned by the closure to the register
            pub fn write_index<F>(&mut self, index: usize, f: F) -> Result<(), I::InterfaceError>
            where
                for<'w> F: FnOnce(&'w mut W) -> &'w mut W,
            {
                let mut w = W::zero();
                let _ = f(&mut w);
                self.write_index_direct(index, w)
            }

            /// Writes the w value to the register
            fn write_index_direct(&mut self, index: usize, w: W) -> Result<(), I::InterfaceError> {
                let addresses = [$($register_address,)*];
                self.interface.write_register(addresses[index], &w.0)?;
                Ok(())
            }
        }
    };
    // This arm implements the single write part (but not write-only)
    (
        #[generate($($generate_list:tt)*)]
        ($register_name:ident, @W, $register_address:expr, $register_size:expr, $register_address_type:ty, $register_bit_order:ty) {
            $(
                $(#[$field_doc:meta])*
                $field_name:ident: $field_type:ty $(:$field_bit_order:ident)? $(as $field_convert_type:ty)? = $field_access_specifier:tt $field_bit_range:expr
            ),*
        }
    ) => {
        /// Writer struct for the register
        #[derive(Debug, Copy, Clone)]
        pub struct W([u8; $register_size]);

        impl W {
            /// Create a zeroed writer
            pub const fn zero() -> Self {
                Self([0; $register_size])
            }

            /// Creates a writer with the given value.
            ///
            /// Be careful because you may inadvertently set invalid values
            pub const fn from_raw(value: [u8; $register_size]) -> Self {
                Self(value)
            }

            /// Sets the raw value of the writer.
            ///
            /// Be careful because you may inadvertently set invalid values
            pub const fn set_raw(self, value: [u8; $register_size]) -> Self {
                Self(value)
            }

            $(
                _implement_register_field!(@W, $register_bit_order, $(#[$field_doc])* $field_name: $field_type $(:$field_bit_order)? $(as $field_convert_type)? = $field_access_specifier $field_bit_range);
            )*
        }

        impl<'a, I> RegAccessor<'a, I, R, W>
        where
            I: RegisterInterface<Address = $register_address_type>,
        {
            /// Writes the value returned by the closure to the register
            pub fn write<F>(&mut self, f: F) -> Result<(), I::InterfaceError>
            where
                for<'w> F: FnOnce(&'w mut W) -> &'w mut W,
            {
                let mut w = W::zero();
                let _ = f(&mut w);
                self.write_direct(w)
            }

            /// Writes the w value to the register
            fn write_direct(&mut self, w: W) -> Result<(), I::InterfaceError> {
                self.interface.write_register($register_address, &w.0)?;
                Ok(())
            }
        }
    };
    // This arm implements both array read and write parts
    (
        #[generate($($generate_list:tt)*)]
        ($register_name:ident, RW, [$($register_address:expr),* $(,)?], $register_size:expr, $register_address_type:ty, $register_bit_order:ty) {
            $(
                $(#[$field_doc:meta])*
                $field_name:ident: $field_type:ty $(:$field_bit_order:ident)? $(as $field_convert_type:ty)? = $field_access_specifier:tt $field_bit_range:expr
            ),*
        }
    ) => {
        _implement_register!(
            #[generate($($generate_list)*)]
            ($register_name, @R, [$($register_address,)*], $register_size, $register_address_type, $register_bit_order) {
                $(
                    $(#[$field_doc])*
                    $field_name: $field_type $(:$field_bit_order)? $(as $field_convert_type)? = $field_access_specifier $field_bit_range
                ),*
            }
        );
        _implement_register!(
            #[generate($($generate_list)*)]
            ($register_name, @W, [$($register_address,)*], $register_size, $register_address_type, $register_bit_order) {
                $(
                    $(#[$field_doc])*
                    $field_name: $field_type $(:$field_bit_order)? $(as $field_convert_type)? = $field_access_specifier $field_bit_range
                ),*
            }
        );

        impl<'a, I> RegAccessor<'a, I, R, W>
        where
            I: RegisterInterface<Address = $register_address_type>,
        {
            /// Reads the register, gives the value to the closure and writes back the value returned by the closure
            pub fn modify_index<F>(&mut self, index: usize, f: F) -> Result<(), I::InterfaceError>
            where
                for<'w> F: FnOnce(R, &'w mut W) -> &'w mut W,
            {
                let r = self.read_index(index)?;
                let mut w = W(r.0.clone());

                let _ = f(r, &mut w);
                self.write_index_direct(index, w)?;
                Ok(())
            }
        }
    };
    // This arm implements both single read and write parts
    (
        #[generate($($generate_list:tt)*)]
        ($register_name:ident, RW, $register_address:expr, $register_size:expr, $register_address_type:ty, $register_bit_order:ty) {
            $(
                $(#[$field_doc:meta])*
                $field_name:ident: $field_type:ty $(:$field_bit_order:ident)? $(as $field_convert_type:ty)? = $field_access_specifier:tt $field_bit_range:expr
            ),*
        }
    ) => {
        _implement_register!(
            #[generate($($generate_list)*)]
            ($register_name, @R, $register_address, $register_size, $register_address_type, $register_bit_order) {
                $(
                    $(#[$field_doc])*
                    $field_name: $field_type $(:$field_bit_order)? $(as $field_convert_type)? = $field_access_specifier $field_bit_range
                ),*
            }
        );
        _implement_register!(
            #[generate($($generate_list)*)]
            ($register_name, @W, $register_address, $register_size, $register_address_type, $register_bit_order) {
                $(
                    $(#[$field_doc])*
                    $field_name: $field_type $(:$field_bit_order)? $(as $field_convert_type)? = $field_access_specifier $field_bit_range
                ),*
            }
        );

        impl<'a, I> RegAccessor<'a, I, R, W>
        where
            I: RegisterInterface<Address = $register_address_type>,
        {
            /// Reads the register, gives the value to the closure and writes back the value returned by the closure
            pub fn modify<F>(&mut self, f: F) -> Result<(), I::InterfaceError>
            where
                for<'w> F: FnOnce(R, &'w mut W) -> &'w mut W,
            {
                let r = self.read()?;
                let mut w = W(r.0.clone());

                let _ = f(r, &mut w);
                self.write_direct(w)?;
                Ok(())
            }
        }
    };
    // This arm implements the read part and disables write
    (
        #[generate($($generate_list:tt)*)]
        ($register_name:ident, RO, $register_address:tt, $register_size:expr, $register_address_type:ty, $register_bit_order:ty) {
            $(
                $(#[$field_doc:meta])*
                $field_name:ident: $field_type:ty $(:$field_bit_order:ident)? $(as $field_convert_type:ty)? = $field_access_specifier:tt $field_bit_range:expr
            ),*
        }
    ) => {
        _implement_register!(
            #[generate($($generate_list)*)]
            ($register_name, @R, $register_address, $register_size, $register_address_type, $register_bit_order) {
                $(
                    $(#[$field_doc])*
                    $field_name: $field_type $(:$field_bit_order)? $(as $field_convert_type)? = $field_access_specifier $field_bit_range
                ),*
            }
        );

        /// Empty writer. This means this register is read-only
        pub type W = ();
    };
    // This arm implements the write part and disables read
    (
        #[generate($($generate_list:tt)*)]
        ($register_name:ident, WO, $register_address:tt, $register_size:expr, $register_address_type:ty, $register_bit_order:ty) {
            $(
                $(#[$field_doc:meta])*
                $field_name:ident: $field_type:ty $(:$field_bit_order:ident)? $(as $field_convert_type:ty)? = $field_access_specifier:tt $field_bit_range:expr
            ),*
        }
    ) => {
        _implement_register!(
            #[generate($($generate_list)*)]
            ($register_name, @W, $register_address, $register_size, $register_address_type, $register_bit_order) {
                $(
                    $(#[$field_doc])*
                    $field_name: $field_type $(:$field_bit_order)? $(as $field_convert_type)? = $field_access_specifier $field_bit_range
                ),*
            }
        );

        /// Empty reader. This means this register is write-only
        pub type R = ();
    };
}

/// Internal macro. Do not use.
#[macro_export]
#[doc(hidden)]
macro_rules! _implement_register_field {
    // Read without 'as' convert
    (@R, $register_bit_order:ty, $(#[$field_doc:meta])* $field_name:ident: $field_type:ty $(:$field_bit_order:ident)? = RO $field_bit_range:expr) => {
        $(#[$field_doc])*
        pub fn $field_name(&self) -> $field_type {
            use device_driver::bitvec::prelude::*;

            _load_with_endianness!(self.0.view_bits::<$register_bit_order>()[$field_bit_range], $($field_bit_order)?)
        }
    };
    // Read with 'as' convert
    (@R, $register_bit_order:ty, $(#[$field_doc:meta])* $field_name:ident: $field_type:ty $(:$field_bit_order:ident)? as $field_convert_type:ty = RO $field_bit_range:expr) => {
        $(#[$field_doc])*
        pub fn $field_name(&self) -> Result<$field_convert_type, ConversionError<$field_type>> {
            use device_driver::bitvec::prelude::*;
            use core::convert::TryInto;

            let raw: $field_type = _load_with_endianness!(self.0.view_bits::<$register_bit_order>()[$field_bit_range], $($field_bit_order)?);
            raw.try_into().map_err(|_| ConversionError { raw })
        }
    };
    (@R, $register_bit_order:ty, $(#[$field_doc:meta])* $field_name:ident: $field_type:ty $(:$field_bit_order:ident)? $(as $field_convert_type:ty)? = WO $field_bit_range:expr) => {
        // Empty on purpose
    };
    (@R, $register_bit_order:ty, $(#[$field_doc:meta])* $field_name:ident: $field_type:ty $(:$field_bit_order:ident)? $(as $field_convert_type:ty)? = RW $field_bit_range:expr) => {
        _implement_register_field!(@R, $register_bit_order, $(#[$field_doc])* $field_name: $field_type $(:$field_bit_order)? $(as $field_convert_type)? = RO $field_bit_range);
        _implement_register_field!(@R, $register_bit_order, $(#[$field_doc])* $field_name: $field_type $(:$field_bit_order)? $(as $field_convert_type)? = WO $field_bit_range);
    };
    (@W, $register_bit_order:ty, $(#[$field_doc:meta])* $field_name:ident: $field_type:ty $(:$field_bit_order:ident)? $(as $field_convert_type:ty)? = RO $field_bit_range:expr) => {
        // Empty on purpose
    };
    // Write without 'as' convert
    (@W, $register_bit_order:ty, $(#[$field_doc:meta])* $field_name:ident: $field_type:ty $(:$field_bit_order:ident)? = WO $field_bit_range:expr) => {
        $(#[$field_doc])*
        pub fn $field_name(&mut self, value: $field_type) -> &mut Self {
            use device_driver::bitvec::prelude::*;

            _store_with_endianness!(self.0.view_bits_mut::<$register_bit_order>()[$field_bit_range], value, $($field_bit_order)?);

            self
        }
    };
    // Write with 'as' convert
    (@W, $register_bit_order:ty, $(#[$field_doc:meta])* $field_name:ident: $field_type:ty $(:$field_bit_order:ident)? as $field_convert_type:ty = WO $field_bit_range:expr) => {
        $(#[$field_doc])*
        pub fn $field_name(&mut self, value: $field_convert_type) -> &mut Self {
            use device_driver::bitvec::prelude::*;

            let raw_value: $field_type = value.into();
            _store_with_endianness!(self.0.view_bits_mut::<$register_bit_order>()[$field_bit_range], raw_value, $($field_bit_order)?);

            self
        }
    };
    (@W, $register_bit_order:ty, $(#[$field_doc:meta])* $field_name:ident: $field_type:ty $(:$field_bit_order:ident)? $(as $field_convert_type:ty)? = RW $field_bit_range:expr) => {
        _implement_register_field!(@W, $register_bit_order, $(#[$field_doc])* $field_name: $field_type $(:$field_bit_order)? $(as $field_convert_type)? = RO $field_bit_range);
        _implement_register_field!(@W, $register_bit_order, $(#[$field_doc])* $field_name: $field_type $(:$field_bit_order)? $(as $field_convert_type)? = WO $field_bit_range);
    };
}

/// Internal macro. Do not use.
#[macro_export]
#[doc(hidden)]
macro_rules! _get_bit_order {
    () => {
        Lsb0
    };
    (LSB) => {
        Lsb0
    };
    (MSB) => {
        Msb0
    };
}

/// Internal macro. Do not use.
///
/// Load the value from the [bitvec::field::BitField] with the given endianness
#[macro_export]
#[doc(hidden)]
macro_rules! _load_with_endianness {
    // Load the value from the field with the default ordering
    ($field:expr, ) => {
        _load_with_endianness!($field, BE)
    };
    // Load the value from the field with the Big Endian ordering
    ($field:expr, BE) => {
        $field.load_be()
    };
    // Load the value from the field with the Little Endian ordering
    ($field:expr, LE) => {
        $field.load_le()
    };
    // Load the value from the field with the Native Endian ordering
    ($field:expr, NE) => {
        $field.load()
    };
}

/// Internal macro. Do not use.
///
/// Store the value into the [bitvec::field::BitField] with the given endianness
#[macro_export]
#[doc(hidden)]
macro_rules! _store_with_endianness {
    // Store the value into the field with the default ordering
    ($field:expr, $value:expr, ) => {
        _store_with_endianness!($field, $value, BE)
    };
    // Store the value into the field with the Big Endian ordering
    ($field:expr, $value:expr, BE) => {
        $field.store_be($value)
    };
    // Store the value into the field with the Little Endian ordering
    ($field:expr, $value:expr, LE) => {
        $field.store_le($value)
    };
    // Store the value into the field with the Native Endian ordering
    ($field:expr, $value:expr, NE) => {
        $field.store($value)
    };
}

/// Internal macro. Do not use.
///
/// A TT muncher that will place the `true` parameter if the list contains the `Debug` keyword
/// and the `false` parameter if it does not.
#[macro_export]
#[doc(hidden)]
macro_rules! generate_if_debug_keyword {
    // There's no Debug keyword
    ($true:item, $false:item, ) => {
        $false
    };
    // There's only a Debug keyword
    ($true:item, $false:item, Debug) => {
        $true
    };
    // There's a Debug keyword
    ($true:item, $false:item, Debug, $($list:tt)*) => {
        generate_if_debug_keyword!($true, $false, Debug);
    };
    // There's only a different keyword
    ($true:item, $false:item, $keyword:ident) => {
        generate_if_debug_keyword!($true, $false, );
    };
    // There's a different keyword, so we need to continue munching
    ($true:item, $false:item, $keyword:ident, $($list:tt)*) => {
        generate_if_debug_keyword!($true, $false, $($list)*);
    };
}