1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
#![warn(clippy::all)]
#![warn(clippy::pedantic)]
//! This crate derives [visitor pattern](https://rust-unofficial.github.io/patterns/patterns/behavioural/visitor.html)
//! for arbitrary data structures. This pattern is particularly useful when dealing with complex nested data structures,
//! abstract trees and hierarchies of all kinds.
//!
//! The main building blocks of this crate are two derivable traits:
//! - [Visitor] implementations walk through a data structures and accumulates some information;
//! - [Drive] implementations are data structures that know how to drive a visitor through themselves.
//!
//! Please refer to these traits' documentation for more details.
//!
//! ## Example
//!
//! ```
//! use derive_visitor::{Visitor, Drive};
//!
//! #[derive(Drive)]
//! struct Directory {
//!     #[drive(skip)]
//!     name: String,
//!     items: Vec<DirectoryItem>,
//! }
//!
//! #[derive(Drive)]
//! enum DirectoryItem {
//!     File(File),
//!     Directory(Directory),
//! }
//!
//! #[derive(Drive)]
//! struct File {
//!     #[drive(skip)]
//!     name: String,
//! }
//!
//! #[derive(Visitor, Default)]
//! #[visitor(File(enter), Directory(enter))]
//! struct Counter {
//!     files: u32,
//!     directories: u32
//! }
//!
//! impl Counter {
//!     fn enter_file(&mut self, _file: &File) {
//!         self.files += 1;
//!     }
//!     fn enter_directory(&mut self, _directory: &Directory) {
//!         self.directories += 1;
//!     }
//! }
//!
//! let mut counter = Counter::default();
//!
//! let example_directory = Directory {
//!     name: "root".into(),
//!     items: vec![
//!         DirectoryItem::Directory(
//!             Directory {
//!                 name: "home".into(),
//!                 items: vec![
//!                     DirectoryItem::File(File { name: "README.md".into() }),
//!                     DirectoryItem::File(File { name: "Star Wars.mov".into() })
//!                 ]
//!             }
//!         ),
//!         DirectoryItem::Directory(
//!             Directory { name: "downloads".into(), items: vec![] }
//!         )
//!     ],
//! };
//!
//! example_directory.drive(&mut counter);
//!
//! assert_eq!(counter.files, 2);
//! assert_eq!(counter.directories, 3);
//! ```
/// See [Drive].
pub use derive_visitor_macros::Drive;
/// See [Visitor].
pub use derive_visitor_macros::Visitor;
use std::{
    any::Any,
    cell::Cell,
    collections::{BTreeMap, BTreeSet, BinaryHeap, HashMap, HashSet, LinkedList, VecDeque},
};
/// An interface for visiting arbitrary data structures.
///
/// A visitor receives items that implement [Any], and can use dynamic dispatch
/// to downcast them to particular types that it is interested in. In the classal
/// visitor pattern, a Visitor has a set of separate methods to deal with each particular
/// item type. This behavior can be implemented automatically using derive.
///
/// ## Derivable
///
/// This trait can be derived for any struct or enum. By default, the derived implementation
/// does nothing. You need to explicitly specify what item types and / or events your visitor
/// is interested in, using top-level attribute:
///
/// ```ignore
/// #[derive(Visitor)]
/// #[visitor(Directory, File)]
/// struct NameValidator {
///     errors: Vec<InvalidNameError>,
/// }
///
/// impl NameValidator {
///     fn enter_directory(&mut self, item: &Directory) {
///         // ...your logic here
///     }
///     fn exit_directory(&mut self, item: &Directory) {
///         // ...your logic here
///     }
///     fn enter_file(&mut self, item: &File) {
///         // ...your logic here
///     }
///     fn exit_file(&mut self, item: &File) {
///         // ...your logic here
///     }
/// }
/// ```
///
/// ## Macro attributes
///
/// If your visitor is only interested in entering or exiting a particular type, but not both,
/// you can configure the derived implementation to only call enter / exit, respectively:
///
/// ```ignore
/// #[derive(Visitor)]
/// #[visitor(Directory(enter), File(exit))]
/// struct NameValidator {
///     errors: Vec<InvalidNameError>,
/// }
///
/// impl NameValidator {
///     fn enter_directory(&mut self, item: &Directory) {
///         // ...your logic here
///     }
///     fn exit_file(&mut self, item: &File) {
///         // ...your logic here
///     }
/// }
/// ```
///
/// You can also provide custom method names for each type / event:
///
/// ```ignore
/// #[derive(Visitor)]
/// #[visitor(Directory(enter="custom_enter_directory", exit="custom_exit_directory"), File)]
/// struct NameValidator {
///     errors: Vec<InvalidNameError>,
/// }
///
/// impl NameValidator {
///     fn custom_enter_directory(&mut self, item: &Directory) {
///         // ...your logic here
///     }
///     fn custom_exit_directory(&mut self, item: &Directory) {
///         // ...your logic here
///     }
///     fn enter_file(&mut self, item: &File) {
///         // ...your logic here
///     }
///     fn exit_file(&mut self, item: &File) {
///         // ...your logic here
///     }
/// }
/// ```
pub trait Visitor {
    fn visit(&mut self, item: &dyn Any, event: Event);
}
/// Defines whether an item is being entered or exited by a visitor.
pub enum Event {
    Enter,
    Exit,
}
/// A data structure that can drive a [visitor](Visitor) through iself.
///
/// Derive or implement this trait for any type that you want to be able to
/// traverse with a visitor.
///
/// `Drive` is implemented for most wrapping and collection types from [std],
/// as long as their wrapped / item type implements `Drive`.
///
/// ## Derivable
///
/// This trait can be derived for any struct or enum.
/// By default, the derived implementation will make the visitor enter `self`,
/// then drive it through every field of `self`, and finally make it exit `self`:
///
/// ```ignore
/// #[derive(Drive)]
/// struct Directory {
///     #[drive(skip)]
///     name: String,
///     items: Vec<DirectoryItem>,
/// }
///
/// #[derive(Drive)]
/// enum DirectoryItem {
///     File(File),
///     Directory(Directory),
/// }
///
/// #[derive(Drive)]
/// struct File {
///     #[drive(skip)]
///     name: String,
/// }
/// ```
///
/// ## Implementing manually
///
/// The following code snippet is roughly equivalent to the implementations
/// that would be derived in the example above:
///
/// ```ignore
/// impl Drive for Directory {
///     fn drive<V: Visitor>(&self, visitor: &mut V) {
///         visitor.visit(self, Event::Enter);
///         self.items.drive(visitor);
///         visitor.visit(self, Event::Exit);
///     }
/// }
///
/// impl Drive for DirectoryItem {
///     fn drive<V: Visitor>(&self, visitor: &mut V) {
///         visitor.visit(self, Event::Enter);
///         match self {
///             Self::File(file) => {
///                 file.drive(visitor);
///             },
///             Self::Directory(directory) => {
///                 directory.drive(visitor);
///             }
///         }
///         visitor.visit(self, Event::Exit);
///     }
/// }
///
/// impl Drive for File {
///     fn drive<V: Visitor>(&self, visitor: &mut V) {
///         visitor.visit(self, Event::Enter);
///         visitor.visit(self, Event::Exit);
///     }
/// }
/// ```
///
/// ## Macro attributes
///
/// The derived implementation of `Drive` can be customized using attributes:
///
/// ### `#[drive(skip)]`
///
/// If applied to a field or an enum variant, the derived implementation won't
/// drive the visitor through that field / variant.
///
/// If applied to a struct or an enum itself, the derived implementation will
/// drive the visitor through the type's fields / variants, but won't make it
/// enter or exit the type itself.
///
/// ### `#[drive(with="path")]`
///
/// Drive a visitor through a field using a custom function.
/// The function must have the following signature: `fn<V: Visitor>(&T, &mut V)`.
///
/// In the example below, this attribute is used to customize driving through a [Vec]:
///
/// ```ignore
/// #[derive(Drive)]
/// struct Book {
///     title: String,
///     #[drive(with="reverse_vec_driver")]
///     chapters: Vec<Chapter>,
/// }
///
/// fn reverse_vec_driver<T, V: Visitor>(vec: &Vec<T>, visitor: &mut V) {
///     for item in vec.iter().rev() {
///         item.drive(visitor);
///     }
/// }
/// ```
pub trait Drive: Any {
    fn drive<V: Visitor>(&self, visitor: &mut V);
}
impl<K, Val> Drive for BTreeMap<K, Val>
where
    K: Drive,
    Val: Drive,
{
    fn drive<V: Visitor>(&self, visitor: &mut V) {
        for (key, value) in self.iter() {
            key.drive(visitor);
            value.drive(visitor);
        }
    }
}
impl<T> Drive for BTreeSet<T>
where
    T: Drive,
{
    fn drive<V: Visitor>(&self, visitor: &mut V) {
        self.iter().for_each(|item| item.drive(visitor));
    }
}
impl<T> Drive for BinaryHeap<T>
where
    T: Drive,
{
    fn drive<V: Visitor>(&self, visitor: &mut V) {
        self.iter().for_each(|item| item.drive(visitor));
    }
}
impl<T> Drive for Box<T>
where
    T: Drive,
{
    fn drive<V: Visitor>(&self, visitor: &mut V) {
        (**self).drive(visitor);
    }
}
impl<T> Drive for Cell<T>
where
    T: Drive + Copy,
{
    fn drive<V: Visitor>(&self, visitor: &mut V) {
        self.get().drive(visitor);
    }
}
impl<K, Val, S> Drive for HashMap<K, Val, S>
where
    K: Drive,
    Val: Drive,
    S: 'static,
{
    fn drive<V: Visitor>(&self, visitor: &mut V) {
        for (key, value) in self.iter() {
            key.drive(visitor);
            value.drive(visitor);
        }
    }
}
impl<T, S> Drive for HashSet<T, S>
where
    T: Drive,
    S: 'static,
{
    fn drive<V: Visitor>(&self, visitor: &mut V) {
        self.iter().for_each(|item| item.drive(visitor));
    }
}
impl<T> Drive for LinkedList<T>
where
    T: Drive,
{
    fn drive<V: Visitor>(&self, visitor: &mut V) {
        self.iter().for_each(|item| item.drive(visitor));
    }
}
impl<T> Drive for Option<T>
where
    T: Drive,
{
    fn drive<V: Visitor>(&self, visitor: &mut V) {
        if let Some(value) = self {
            value.drive(visitor);
        }
    }
}
impl<T> Drive for Vec<T>
where
    T: Drive,
{
    fn drive<V: Visitor>(&self, visitor: &mut V) {
        self.iter().for_each(|item| item.drive(visitor));
    }
}
impl<T> Drive for VecDeque<T>
where
    T: Drive,
{
    fn drive<V: Visitor>(&self, visitor: &mut V) {
        self.iter().for_each(|item| item.drive(visitor));
    }
}
impl Drive for () {
    fn drive<V: Visitor>(&self, _visitor: &mut V) {}
}
macro_rules! tuple_impls {
    ( $( $( $type:ident ),+ => $( $field:tt ),+ )+ ) => {
        $(
            impl<$( $type ),+> Drive for ($($type,)+)
            where
                $(
                    $type: Drive
                ),+
            {
                fn drive<V: Visitor>(&self, visitor: &mut V) {
                    $(
                        self.$field.drive(visitor);
                    )+
                }
            }
        )+
    };
}
tuple_impls! {
    T0 => 0
    T0, T1 => 0, 1
    T0, T1, T2 => 0, 1, 2
    T0, T1, T2, T3 => 0, 1, 2, 3
    T0, T1, T2, T3, T4 => 0, 1, 2, 3, 4
    T0, T1, T2, T3, T4, T5 => 0, 1, 2, 3, 4, 5
    T0, T1, T2, T3, T4, T5, T6 => 0, 1, 2, 3, 4, 5, 6
    T0, T1, T2, T3, T4, T5, T6, T7 => 0, 1, 2, 3, 4, 5, 6, 7
}
impl<T> Drive for [T; 0]
where
    T: Drive,
{
    fn drive<V: Visitor>(&self, _visitor: &mut V) {}
}
macro_rules! array_impls {
    ( $( $len:expr => $( $field:expr ),+ )+ ) => {
        $(
            impl<T> Drive for [T; $len]
            where
                T: Drive
            {
                fn drive<V: Visitor>(&self, visitor: &mut V) {
                    $(
                        self[$field].drive(visitor);
                    )+
                }
            }
        )+
    };
}
array_impls! {
    1 => 0
    2 => 0, 1
    3 => 0, 1, 2
    4 => 0, 1, 2, 3
    5 => 0, 1, 2, 3, 4
    6 => 0, 1, 2, 3, 4, 5
    7 => 0, 1, 2, 3, 4, 5, 6
    8 => 0, 1, 2, 3, 4, 5, 6, 7
}