derive_sql/proxy/
sqlite.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
//! SQLite connection - a trait is defined to be implemented by SQLite connection.
//! This allow functionalities to be added to the connection directly. Two implementations
//! of the trait are provided: `sqlite::Conn` provide a wrapper around the raw `rusqlite::Conn`;
//! `sqlite::Log` augments a connection by log the requests.
use super::*;

#[cfg(feature = "compatibility_v0_10")]
mod conn; 
#[cfg(feature = "compatibility_v0_10")]
pub use conn::Conn;
#[cfg(feature = "compatibility_v0_10")]
mod log; 
#[cfg(feature = "compatibility_v0_10")]
pub use log::Log;

#[cfg(feature = "compatibility_v0_10")]
/// Generic trait exposing methods used for interaction with SQLite
/// in `DeriveSqlite` macro implementation.
pub trait SqliteTrait {
  fn execute<P>(&self, sql: &str, params: P) -> Result<usize>
  where P: rusqlite::Params;

  fn query_first<T, P, F>(&self, sql: &str, params: P, f: F) -> Result<T>
  where P: rusqlite::Params,
        F: FnOnce(&rusqlite::Row<'_>) -> rusqlite::Result<T>;

  fn query_map<T, P, F>(&self, sql: &str, params: P, f: F) -> Result<Vec<T>>
  where P: rusqlite::Params,
        F: FnMut(&rusqlite::Row<'_>) -> rusqlite::Result<T>;

}

#[cfg(feature = "compatibility_v0_10")]
/// Auto-implement `Selectable` trait for struct implementing `SqliteTrait`
impl<T, S, I> traits::Select<T, I> for S
where S: SqliteTrait,
      T: traits::AsStatement<I> + traits::IsSelect,
      I: for<'a> std::convert::TryFrom<&'a rusqlite::Row<'a>, Error = rusqlite::Error>,
{
  fn select(&self, s: &T) -> Result<Vec<I>> {
    self.query_map(s.as_statement()?.as_str(), [], |r| r.try_into())
  }
}

#[cfg(feature = "compatibility_v0_10")]
/// Auto-implement `CreateTable` trait for struct implementing `SqliteTrait`
impl<T, S> traits::CreateTable<T> for S
where S: SqliteTrait,
      T: traits::AsStatement<()>
{
  fn create_table(&mut self, s: &T) -> Result<()> {
    self.execute(s.as_statement()?.as_str(), ())?;
    Ok(())
  }
}

pub struct Row {
  values: Vec<traits::Value>,
}

impl std::convert::TryFrom<(usize, &rusqlite::Row<'_>)> for Row {
  type Error = rusqlite::Error;
  fn try_from((column_count, row): (usize, &rusqlite::Row<'_>)) -> std::result::Result<Self, Self::Error> {
    let mut values = Vec::new();
    for i in 0..column_count {
      let v = match row.get_ref(i)? {
        ::rusqlite::types::ValueRef::Null       => traits::Value::Null,
        ::rusqlite::types::ValueRef::Integer(v) => traits::Value::Integer(v),
        ::rusqlite::types::ValueRef::Real(v)    => traits::Value::Real(v),
        ::rusqlite::types::ValueRef::Text(v)    => traits::Value::Text(std::str::from_utf8(v)?.to_string()),
        ::rusqlite::types::ValueRef::Blob(v)    => traits::Value::Blob(v.to_vec()),
      };
      values.push(v);
    }
    Ok(Row { values })
  }
}

impl traits::Row for Row {
  fn get_value(&self, i: usize) -> Option<Result<traits::Value>> { 
    self.values.get(i).map(|v| Ok(v.clone()))
  }
}

fn execute<'a, P>(statement: &mut rusqlite::Statement<'a>, params: &P) -> Result<()>
where P: traits::Params,
{
    let params: Vec<traits::Param> = params.as_vec_params()?;
    let _ = match params.len() {
      0 => statement.execute(())?,
      1 => statement.execute([ &params[0] ] )?,
      2 => statement.execute([ &params[0], &params[1] ] )?,
      3 => statement.execute([ &params[0], &params[1], &params[2], ] )?,
      4 => statement.execute([ &params[0], &params[1], &params[2], &params[3], ] )?,
      5 => statement.execute([ &params[0], &params[1], &params[2], &params[3], &params[4], ] )?,
      6 => statement.execute([ &params[0], &params[1], &params[2], &params[3], &params[4], &params[5], ] )?,
      7 => statement.execute([ &params[0], &params[1], &params[2], &params[3], &params[4], &params[5], &params[6], ] )?,
      8 => statement.execute([ &params[0], &params[1], &params[2], &params[3], &params[4], &params[5], &params[6], &params[7], ] )?,
      9 => statement.execute([ &params[0], &params[1], &params[2], &params[3], &params[4], &params[5], &params[6], &params[7], &params[8], ] )?,
     10 => statement.execute([ &params[0], &params[1], &params[2], &params[3], &params[4], &params[5], &params[6], &params[7], &params[8], &params[9], ] )?,
     11 => statement.execute([ &params[0], &params[1], &params[2], &params[3], &params[4], &params[5], &params[6], &params[7], &params[8], &params[9], &params[10], ] )?,
     12 => statement.execute([ &params[0], &params[1], &params[2], &params[3], &params[4], &params[5], &params[6], &params[7], &params[8], &params[9], &params[10], &params[11], ] )?,
     13 => statement.execute([ &params[0], &params[1], &params[2], &params[3], &params[4], &params[5], &params[6], &params[7], &params[8], &params[9], &params[10], &params[11], &params[12], ] )?,
     14 => statement.execute([ &params[0], &params[1], &params[2], &params[3], &params[4], &params[5], &params[6], &params[7], &params[8], &params[9], &params[10], &params[11], &params[12], &params[13], ] )?,
     15 => statement.execute([ &params[0], &params[1], &params[2], &params[3], &params[4], &params[5], &params[6], &params[7], &params[8], &params[9], &params[10], &params[11], &params[12], &params[13], &params[14], ] )?,
     16 => statement.execute([ &params[0], &params[1], &params[2], &params[3], &params[4], &params[5], &params[6], &params[7], &params[8], &params[9], &params[10], &params[11], &params[12], &params[13], &params[14], &params[15], ] )?,
     17 => statement.execute([ &params[0], &params[1], &params[2], &params[3], &params[4], &params[5], &params[6], &params[7], &params[8], &params[9], &params[10], &params[11], &params[12], &params[13], &params[14], &params[15], &params[16], ] )?,
      // _ => { self.conn.execute(query, params.iter().collect::<Vec<&traits::Param>>().as_slice())?; },
      _ => { return Err(Error::SqliteMaximumNumberOfParametersExceeded(17, params.len())); },
    };
    Ok(())
}

impl traits::Connection<Row> for rusqlite::Connection
{
  fn flavor(&self) -> traits::Flavor { traits::Flavor::SQLite }

  fn execute_with_params<S, P>(&mut self, query: S, params: &P) -> Result<()>
  where S: std::convert::AsRef<str>,
        P: traits::Params,
  {
    let mut statement = self.prepare(query.as_ref())?;
    execute(&mut statement, params)
  }

  fn execute_with_params_iterator<'a, S, I, P>(&mut self, query: S, params_iter: I) -> Result<()>
  where S: std::convert::AsRef<str>,
        P: traits::Params + 'a,
        I: core::iter::IntoIterator<Item = &'a P>
  {
    let tx = self.transaction()?;
    {
      let mut statement = tx.prepare(query.as_ref())?;
      for params in params_iter { execute(&mut statement, params)?; }
    }
    tx.commit()?;
    Ok(())
  }

/*
  fn execute_with_params_rows<S, P>(&mut self, query: S, params: &P) -> Result<Vec<Row>>
  where S: std::convert::AsRef<str>,
        P: traits::Params,
  {
    let mut statement = self.prepare(query.as_ref())?;
    let column_count = statement.column_count();

    let f = |row: &rusqlite::Row<'_>| { Ok((column_count, row).try_into()?) };
    let params: Vec<traits::Param> = params.as_vec_params()?;
    let r = match params.len() {
      0 => statement.query_map((), f)?,
      1 => statement.query_map([ &params[0] ], f )?,
      2 => statement.query_map([ &params[0], &params[1] ], f )?,
      // _ => { self.conn.execute(query, params.iter().collect::<Vec<&traits::Param>>().as_slice())?; },
      _ => { return Err(Error::NotImplemented); },
    }
    .collect::<rusqlite::Result<Vec<Row>>>()?;

    Ok(r)
  }
  */


  fn query<S>(&mut self, query: S) -> Result<Vec<Row>>
  where S: std::convert::AsRef<str>
  {
    use fallible_iterator::FallibleIterator;

    let mut statement = self.prepare(query.as_ref())?;
    let column_count = statement.column_count();

    let r = statement.query(())?
    .map(|row| Ok((column_count, row).try_into()?) )
    .collect::<Vec<Row>>()?;

    Ok(r)
  }
}

#[cfg(test)]
mod tests {
  use super::*;

  #[test]
  fn test_connection() -> Result<()> {
    let mut conn = rusqlite::Connection::open_in_memory()?;

    proxy_test::run_connection(&mut conn)?;

    let r: Vec<String> = conn.prepare("SELECT name FROM mytable_proxy_conn")?
    .query_map(
      (),
      |r| Ok(r.get(0)?)
    )?.collect::<rusqlite::Result<Vec<String>>>()?;
    assert!(r[0].eq("my name"));
    
    Ok(())
  }

  #[test]
  fn test_run_with_date() -> Result<()> {
    let mut conn = rusqlite::Connection::open_in_memory()?;
    proxy_test::run_with_date(&mut conn)?;
    Ok(())
  }
}