dendritic_regression/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
//! # Dendritic Regression Crate
//!
//! This crate contains functionality for performing regression with linear logistic models.
//! Contains standard linear regression methods with weight regularization and logistic regression.
//! The categorization of these models is subject to change as this project moves forward.
//! This may eventually just become a "linear" modeling package.
//!
//! ## Features
//! - **Linear**: Standard scalar and min max normlization of data.
//! - **Lasso**: One hot encoding for multi class data
//! - **Ridge**: One hot encoding for multi class data
//! - **Elastic Net**: One hot encoding for multi class data
//! - **Logistic**: One hot encoding for multi class data
//!
//! ## Example Linear Model Usage
//! This is an example of using the linear models available in the regression crate for dendritic.
//! The examples will contain use of `Linear`, `Ridge`, `Lasso` and `ElasticNet`
//! ```rust
//! use dendritic_ndarray::ndarray::NDArray;
//! use dendritic_ndarray::ops::*;
//! use dendritic_metrics::loss::*;
//! use dendritic_regression::elastic_net::*;
//! use dendritic_regression::linear::*;
//! use dendritic_regression::ridge::*;
//! use dendritic_regression::lasso::*;
//! use dendritic_datasets::airfoil_noise::*;
//!
//! fn main() {
//!
//! // Hyperparameters
//! let learning_rate: f64 = 0.01;
//! let lambda: f64 = 0.001;
//! let data_path = "../dendritic-datasets/data/airfoil_noise_data.parquet";
//! let (x_train, y_train) = load_airfoil_data(data_path).unwrap();
//!
//! // linear
//! let mut linear = Linear::new(
//! &x_train,
//! &y_train,
//! 0.01
//! ).unwrap();
//!
//! // ridge
//! let mut ridge = Ridge::new(
//! &x_train,
//! &y_train,
//! lambda, learning_rate
//! ).unwrap();
//!
//! // lasso
//! let mut lasso = Lasso::new(
//! &x_train,
//! &y_train,
//! lambda, learning_rate
//! ).unwrap();
//!
//! // elastic net
//! let mut model = ElasticNet::new(
//! &x_train,
//! &y_train,
//! lambda, learning_rate
//! ).unwrap();
//!
//! // Example of training the linear model
//! model.train(1000, false); // train for 1000 epochs (logging set to false)
//! let outputs = model.predict(x_train);
//! let loss = mse(&outputs, &y_train).unwrap();
//! println!("Output: {:?}", outputs);
//! println!("Loss: {:?}", loss)
//! }
//! ```
//! ## Example Logistic Model Usage
//! This is an example of using the logistic regression model provided by dendritic.
//! The example below uses binary classification, but multi class is also supported with `MultiClassLogistic`.
//! ```rust
//! use dendritic_ndarray::ndarray::NDArray;
//! use dendritic_ndarray::ops::*;
//! use dendritic_metrics::loss::*;
//! use dendritic_regression::logistic::*;
//! use dendritic_datasets::breast_cancer::*;
//! use dendritic_metrics::activations::*;
//!
//! fn main() {
//!
//! // load data
//! let data_path = "../dendritic-datasets/data/breast_cancer.parquet";
//! let (x_train, y_train) = load_breast_cancer(data_path).unwrap();
//!
//! // create logistic regression model
//! let mut log_model = Logistic::new(
//! &x_train,
//! &y_train,
//! sigmoid_vec,
//! 0.001
//! ).unwrap();
//!
//! log_model.sgd(1000, true, 5);
//! let sample_index = 450;
//! let x_test = x_train.batch(5).unwrap();
//! let y_test = y_train.batch(5).unwrap();
//! let y_pred = log_model.predict(x_test[sample_index].clone());
//! println!("Actual: {:?}", y_test[sample_index]);
//! println!("Prediction: {:?}", y_pred.values());
//!
//! let loss = mse(&y_test[sample_index], &y_pred).unwrap();
//! println!("LOSS: {:?}", loss);
//!
//! }
//! ```
//! ## Disclaimer
//! The dendritic project is a toy machine learning library built for learning and research purposes.
//! It is not advised by the maintainer to use this library as a production ready machine learning library.
//! This is a project that is still very much a work in progress.
pub mod logistic;
pub mod linear;
pub mod ridge;
pub mod lasso;
pub mod elastic_net;