1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
//! methods for 2D and 3D poly loop

use num_traits::AsPrimitive;

/// return  arc-length of a 2D or 3D poly loop
pub fn arclength_vec<T, const N: usize>(
    vtxs: &[nalgebra::SVector<T, N>]) -> T
    where T: nalgebra::RealField + Copy,
          f64: AsPrimitive<T>
{
    if vtxs.len() < 2 { return T::zero(); }
    let np = vtxs.len();
    let mut len: T = T::zero();
    for ip0 in 0..np {
        let ip1 = (ip0 + 1) % np;
        len += (vtxs[ip0] - vtxs[ip1]).norm();
    }
    len
}

/// return  arc-length of a 2D or 3D poly loop
pub fn arclength<T, const N: usize>(
    vtx2xyz: &[T]) -> T
    where T: num_traits::Float + std::ops::AddAssign
{
    let np = vtx2xyz.len() / N;
    let mut len: T = T::zero();
    for ip0 in 0..np {
        let ip1 = (ip0 + 1) % np;
        let p0 = &vtx2xyz[ip0 * N..ip0 * N + N];
        let p1 = &vtx2xyz[ip1 * N..ip1 * N + N];
        len += del_geo::edge::length_::<T, N>(p0, p1);
    }
    len
}

pub fn edge2length<T, const N: usize>(
    vtx2xyz: &[T]) -> Vec<T>
    where T: num_traits::Float + std::ops::AddAssign
{
    let np = vtx2xyz.len() / N;
    let mut edge2length = Vec::<T>::with_capacity(np);
    for ip0 in 0..np {
        let ip1 = (ip0 + 1) % np;
        let p0 = &vtx2xyz[ip0 * N..ip0 * N + N];
        let p1 = &vtx2xyz[ip1 * N..ip1 * N + N];
        edge2length.push(del_geo::edge::length_::<T, N>(p0, p1));
    }
    edge2length
}

pub fn cog<T, const N: usize>(vtx2xyz: &[T]) -> nalgebra::SVector<T, N>
    where T: nalgebra::RealField + Copy + 'static,
          f64: AsPrimitive<T>
{
    let num_vtx = vtx2xyz.len() / 3;
    assert_eq!(vtx2xyz.len(), num_vtx * 3);
    let mut cog = nalgebra::SVector::<T, N>::zeros();
    let mut len = T::zero();
    for i_edge in 0..num_vtx {
        let iv0 = i_edge;
        let iv1 = (i_edge + 1) % num_vtx;
        let q0 = nalgebra::SVector::<T, N>::from_row_slice(&vtx2xyz[iv0 * N..iv0 * N + N]);
        let q1 = nalgebra::SVector::<T, N>::from_row_slice(&vtx2xyz[iv1 * N..iv1 * N + N]);
        let l = (q0 - q1).norm();
        cog += (q0 + q1).scale(0.5_f64.as_() * l);
        len += l;
    }
    cog / len
}

pub fn cov<T, const N: usize>(vtx2xyz: &[T]) -> nalgebra::SMatrix<T, N, N>
    where T: nalgebra::RealField + Copy + 'static,
          f64: AsPrimitive<T>
{
    let num_vtx = vtx2xyz.len() / N;
    assert_eq!(vtx2xyz.len(), num_vtx * N);
    let cog = cog::<T, N>(vtx2xyz);
    let mut cov = nalgebra::SMatrix::<T, N, N>::zeros();
    for i_edge in 0..num_vtx {
        let iv0 = i_edge;
        let iv1 = (i_edge + 1) % num_vtx;
        let q0 = nalgebra::SVector::<T, N>::from_row_slice(&vtx2xyz[iv0 * N..iv0 * N + N]) - cog;
        let q1 = nalgebra::SVector::<T, N>::from_row_slice(&vtx2xyz[iv1 * N..iv1 * N + N]) - cog;
        let l = (q0 - q1).norm();
        cov += (q0 * q0.transpose() + q1 * q1.transpose()).scale(l / 3_f64.as_());
        cov += (q0 * q1.transpose() + q1 * q0.transpose()).scale(l / 6_f64.as_());
    }
    cov
}

pub fn resample<T, const N: usize>(
    vtx2xyz_in: &[T],
    num_edge_out: usize) -> Vec<T>
    where T: nalgebra::RealField + num_traits::Float + Copy,
          f64: AsPrimitive<T>,
          usize: AsPrimitive<T>
{
    let mut v2x_out = Vec::<T>::new();
    let num_edge_in = vtx2xyz_in.len() / N;
    let len_edge_out = arclength::<T, N>(vtx2xyz_in) / num_edge_out.as_();
    v2x_out.extend_from_slice(&vtx2xyz_in[0..N]);
    let mut i_edge_in = 0;
    let mut traveled_ratio0 = T::zero();
    let mut remaining_length = len_edge_out;
    loop {
        if i_edge_in >= num_edge_in { break; }
        if v2x_out.len() >= num_edge_out * N { break; }
        let i0 = i_edge_in;
        let i1 = (i_edge_in + 1) % num_edge_in;
        let p0 = nalgebra::SVector::<T, N>::from_column_slice(&vtx2xyz_in[i0 * N..i0 * N + N]);
        let p1 = nalgebra::SVector::<T, N>::from_column_slice(&vtx2xyz_in[i1 * N..i1 * N + N]);
        let len_edge0 = (p1 - p0).norm();
        let len_togo0 = len_edge0 * (1_f64.as_() - traveled_ratio0);
        if len_togo0 > remaining_length { // put point in this segment
            traveled_ratio0 += remaining_length / len_edge0;
            let pn = p0.scale(1_f64.as_() - traveled_ratio0) + p1.scale(traveled_ratio0);
            v2x_out.extend(pn.iter());
            remaining_length = len_edge_out;
        } else { // next segment
            remaining_length -= len_togo0;
            traveled_ratio0 = 0_f64.as_();
            i_edge_in += 1;
        }
    }
    v2x_out
}

#[allow(clippy::identity_op)]
pub fn resample_multiple_loops_remain_original_vtxs<T>(
    loop2idx_inout: &mut Vec<usize>,
    idx2vtx_inout: &mut Vec<usize>,
    vtx2vec_inout: &mut Vec<nalgebra::Vector2<T>>,
    max_edge_length: T)
    where T: nalgebra::RealField + Copy + AsPrimitive<usize>,
          usize: AsPrimitive<T>
{
    assert_eq!(vtx2vec_inout.len(), idx2vtx_inout.len());
    let loop2idx_in = loop2idx_inout.clone();
    let idx2vtx_in = idx2vtx_inout.clone();
    assert!(idx2vtx_in.len() >= 2);
    let num_loop = loop2idx_in.len() - 1;
    let mut edge2point: Vec<Vec<usize>> = vec!(vec!(); idx2vtx_in.len());
    {
        for i_loop in 0..num_loop {
            assert!(loop2idx_in[i_loop + 1] > loop2idx_in[i_loop]);
            let np = loop2idx_in[i_loop + 1] - loop2idx_in[i_loop];
            for ip in 0..np {
                let iipo0 = loop2idx_in[i_loop] + (ip + 0) % np;
                let iipo1 = loop2idx_in[i_loop] + (ip + 1) % np;
                assert!(iipo0 < idx2vtx_in.len());
                assert!(iipo1 < idx2vtx_in.len());
                let ipo0 = idx2vtx_in[iipo0];
                let ipo1 = idx2vtx_in[iipo1];
                assert!(ipo0 < vtx2vec_inout.len());
                assert!(ipo1 < vtx2vec_inout.len());
                let po0 = vtx2vec_inout[ipo0]; // never use reference here because aVec2 will resize afterward
                let po1 = vtx2vec_inout[ipo1]; // never use reference here because aVec2 will resize afterward
                let nadd: usize = ((po0 - po1).norm() / max_edge_length).as_();
                if nadd == 0 {
                    continue;
                }
                for iadd in 0..nadd {
                    let r2: T = (iadd + 1).as_() / (nadd + 1).as_();
                    let v2 = po0.scale(T::one() - r2) + po1.scale(r2);
                    let ipo2 = vtx2vec_inout.len();
                    vtx2vec_inout.push(v2);
                    assert!(iipo0 < edge2point.len());
                    edge2point[iipo0].push(ipo2);
                }
            }
        }
    }
    ////
    loop2idx_inout.resize(num_loop + 1, usize::MAX);
    loop2idx_inout[0] = 0;
    for iloop in 0..num_loop {
        let nbar0 = loop2idx_in[iloop + 1] - loop2idx_in[iloop];
        let mut nbar1 = nbar0;
        for ibar in 0..nbar0 {
            let iip_loop = loop2idx_in[iloop] + ibar;
            nbar1 += edge2point[iip_loop].len();
        }
        loop2idx_inout[iloop + 1] = loop2idx_inout[iloop] + nbar1;
    }
    // adding new vertices on the outline
    idx2vtx_inout.resize(loop2idx_inout[num_loop], usize::MAX);
    let mut i_vtx0 = 0;
    for i_loop in 0..num_loop {
        for iip_loop in loop2idx_in[i_loop]..loop2idx_in[i_loop + 1] {
            let ip_loop = idx2vtx_in[iip_loop];
            idx2vtx_inout[i_vtx0] = ip_loop;
            i_vtx0 += 1;
            for iadd in 0..edge2point[ip_loop].len() {
                idx2vtx_inout[i_vtx0] = edge2point[iip_loop][iadd];
                i_vtx0 += 1;
            }
        }
    }
    assert_eq!(idx2vtx_inout.len(), vtx2vec_inout.len());
    assert_eq!(idx2vtx_inout.len(), i_vtx0);
}

pub fn to_cylinder_trimeshes<Real>(
    vtx2xy: &[Real],
    num_dim: usize,
    radius: Real) -> (Vec<usize>, Vec<Real>)
where Real: nalgebra::RealField + num_traits::FloatConst + 'static + Copy,
    usize: AsPrimitive<Real>,
    f64: AsPrimitive<Real>
{
    let num_vtx = vtx2xy.len() / num_dim;
    let mut out_tri2vtx: Vec<usize> = vec!();
    let mut out_vtx2xyz: Vec<Real> = vec!();
    for i_edge in 0..num_vtx {
        let i0 = i_edge;
        let i1 = (i_edge + 1) % num_vtx;
        let p0 = &vtx2xy[i0*num_dim..(i0+1)*num_dim];
        let p1 = &vtx2xy[i1*num_dim..(i1+1)*num_dim];
        let p0 =
            if num_dim == 3 { nalgebra::Vector3::<Real>::new(p0[0], p0[1], p0[2]) }
            else { nalgebra::Vector3::<Real>::new(p0[0], p0[1], Real::zero()) };
        let p1 =
            if num_dim == 3 { nalgebra::Vector3::<Real>::new(p1[0], p1[1], p1[2]) }
            else { nalgebra::Vector3::<Real>::new(p1[0], p1[1], Real::zero()) };
        let (tri2vtx, vtx2xyz)
            = crate::trimesh3_primitive::cylinder_open_connecting_two_points(
            32, radius, p0, p1);
        crate::trimesh3::merge(
            &mut out_tri2vtx, &mut out_vtx2xyz,
            tri2vtx.as_slice(), vtx2xyz.as_slice());
    }
    (out_tri2vtx, out_vtx2xyz)
}