Struct deku::bitvec::BitPtrRange

source ·
pub struct BitPtrRange<M = Const, T = usize, O = Lsb0>where
    M: Mutability,
    T: BitStore,
    O: BitOrder,
{ pub start: BitPtr<M, T, O>, pub end: BitPtr<M, T, O>, }
Expand description

Bit-Pointer Range

This type is equivalent in purpose, but superior in functionality, to Range<BitPtr<M, T, O>>. If the standard library stabilizes Step, the trait used to drive Range operations, then this type will likely be destroyed in favor of an impl Step for BitPtr block and use of standard ranges.

Like Range, this is a half-open set where the low bit-pointer selects the first live bit in a span and the high bit-pointer selects the first dead bit after the span.

This type is not capable of inspecting provenance, and has no requirement of its own that both bit-pointers be derived from the same provenance region. It is safe to construct and use with any pair of bit-pointers; however, the bit-pointers it produces are, necessarily, unsafe to use.

Original

Range<*bool>

Memory Representation

BitPtr is required to be repr(packed) in order to satisfy the BitRef size optimizations. In order to stay minimally sized itself, this type has no alignment requirement, and reading either bit-pointer may incur a misalignment penalty. Reads are always safe and valid; they may merely be slow.

Type Parameters

This takes the same type parameters as BitPtr, as it is simply a pair of bit-pointers with range semantics.

Fields§

§start: BitPtr<M, T, O>

The lower, inclusive, bound of the range. The bit to which this points is considered live.

§end: BitPtr<M, T, O>

The higher, exclusive, bound of the range. The bit to which this points is considered dead, and the pointer may be one bit beyond the bounds of an allocation region.

Because Rust and LLVM both define the address of base + (len * width) as being within the provenance of base, even though that address may itself be the base address of another region in a different provenance, and bit-pointers are always composed of an ordinary memory address and a bit-counter, the ending bit-pointer is always valid.

Implementations§

The canonical empty range. All ranges with zero length (equal .start and .end) are equally empty.

Explicitly converts a Range<BitPtr> into a BitPtrRange.

Explicitly converts a BitPtrRange into a Range<BitPtr>.

Tests if the range is empty (the distance between bit-pointers is 0).

Original

Range::is_empty

Examples
use bitvec::prelude::*;
use bitvec::ptr::BitPtrRange;

let data = 0u8;
let bp = BitPtr::<_, _, Lsb0>::from_ref(&data);
let mut range = BitPtrRange::from_range(bp .. bp.wrapping_add(1));

assert!(!range.is_empty());
assert_ne!(range.start, range.end);

range.next();

assert!(range.is_empty());
assert_eq!(range.start, range.end);

Tests if a given bit-pointer is contained within the range.

Bit-pointer ordering is defined when the types have the same exact BitOrder type parameter and the same BitStore::Mem associated type (but are free to differ in alias condition!). Inclusion in a range occurs when the bit-pointer is not strictly less than the range start, and is strictly less than the range end.

Original

Range::contains

Examples
use bitvec::prelude::*;
use bitvec::ptr::BitPtrRange;
use core::cell::Cell;

let data = 0u16;
let bp = BitPtr::<_, _, Lsb0>::from_ref(&data);

let mut range = BitPtrRange::from_range(bp .. bp.wrapping_add(16));
range.nth(2);
range.nth_back(2);

assert!(bp < range.start);
assert!(!range.contains(&bp));

let mid = bp.wrapping_add(8);

let same_mem = mid.cast::<Cell<u16>>();
assert!(range.contains(&mid));

Casting to a different BitStore type whose Mem parameter differs from the range always results in a false response, even if the pointer being tested is numerically within the range.

Trait Implementations§

Returns a copy of the value. Read more
Performs copy-assignment from source. Read more
Formats the value using the given formatter. Read more
Returns the “default value” for a type. Read more
Removes and returns an element from the end of the iterator. Read more
Returns the nth element from the end of the iterator. Read more
🔬This is a nightly-only experimental API. (iter_advance_by)
Advances the iterator from the back by n elements. Read more
This is the reverse version of Iterator::try_fold(): it takes elements starting from the back of the iterator. Read more
An iterator method that reduces the iterator’s elements to a single, final value, starting from the back. Read more
Searches for an element of an iterator from the back that satisfies a predicate. Read more
Returns the exact remaining length of the iterator. Read more
🔬This is a nightly-only experimental API. (exact_size_is_empty)
Returns true if the iterator is empty. Read more
Converts to this type from the input type.
Feeds this value into the given Hasher. Read more
Feeds a slice of this type into the given Hasher. Read more
The type of the elements being iterated over.
Returns the bounds on the remaining length of the iterator. Read more
Consumes the iterator, counting the number of iterations and returning it. Read more
Consumes the iterator, returning the last element. Read more
Advances the iterator and returns the next value. Read more
Returns the nth element of the iterator. Read more
🔬This is a nightly-only experimental API. (iter_next_chunk)
Advances the iterator and returns an array containing the next N values. Read more
🔬This is a nightly-only experimental API. (iter_advance_by)
Advances the iterator by n elements. Read more
Creates an iterator starting at the same point, but stepping by the given amount at each iteration. Read more
Takes two iterators and creates a new iterator over both in sequence. Read more
‘Zips up’ two iterators into a single iterator of pairs. Read more
🔬This is a nightly-only experimental API. (iter_intersperse)
Creates a new iterator which places an item generated by separator between adjacent items of the original iterator. Read more
Takes a closure and creates an iterator which calls that closure on each element. Read more
Calls a closure on each element of an iterator. Read more
Creates an iterator which uses a closure to determine if an element should be yielded. Read more
Creates an iterator that both filters and maps. Read more
Creates an iterator which gives the current iteration count as well as the next value. Read more
Creates an iterator which can use the peek and peek_mut methods to look at the next element of the iterator without consuming it. See their documentation for more information. Read more
Creates an iterator that skips elements based on a predicate. Read more
Creates an iterator that yields elements based on a predicate. Read more
Creates an iterator that both yields elements based on a predicate and maps. Read more
Creates an iterator that skips the first n elements. Read more
Creates an iterator that yields the first n elements, or fewer if the underlying iterator ends sooner. Read more
An iterator adapter similar to fold that holds internal state and produces a new iterator. Read more
Creates an iterator that works like map, but flattens nested structure. Read more
Creates an iterator which ends after the first None. Read more
Does something with each element of an iterator, passing the value on. Read more
Borrows an iterator, rather than consuming it. Read more
Transforms an iterator into a collection. Read more
🔬This is a nightly-only experimental API. (iter_collect_into)
Collects all the items from an iterator into a collection. Read more
Consumes an iterator, creating two collections from it. Read more
🔬This is a nightly-only experimental API. (iter_partition_in_place)
Reorders the elements of this iterator in-place according to the given predicate, such that all those that return true precede all those that return false. Returns the number of true elements found. Read more
🔬This is a nightly-only experimental API. (iter_is_partitioned)
Checks if the elements of this iterator are partitioned according to the given predicate, such that all those that return true precede all those that return false. Read more
An iterator method that applies a function as long as it returns successfully, producing a single, final value. Read more
An iterator method that applies a fallible function to each item in the iterator, stopping at the first error and returning that error. Read more
Folds every element into an accumulator by applying an operation, returning the final result. Read more
Reduces the elements to a single one, by repeatedly applying a reducing operation. Read more
🔬This is a nightly-only experimental API. (iterator_try_reduce)
Reduces the elements to a single one by repeatedly applying a reducing operation. If the closure returns a failure, the failure is propagated back to the caller immediately. Read more
Tests if every element of the iterator matches a predicate. Read more
Tests if any element of the iterator matches a predicate. Read more
Searches for an element of an iterator that satisfies a predicate. Read more
Applies function to the elements of iterator and returns the first non-none result. Read more
🔬This is a nightly-only experimental API. (try_find)
Applies function to the elements of iterator and returns the first true result or the first error. Read more
Searches for an element in an iterator, returning its index. Read more
Searches for an element in an iterator from the right, returning its index. Read more
Returns the element that gives the maximum value from the specified function. Read more
Returns the element that gives the maximum value with respect to the specified comparison function. Read more
Returns the element that gives the minimum value from the specified function. Read more
Returns the element that gives the minimum value with respect to the specified comparison function. Read more
Reverses an iterator’s direction. Read more
Converts an iterator of pairs into a pair of containers. Read more
Creates an iterator which copies all of its elements. Read more
Creates an iterator which clones all of its elements. Read more
Repeats an iterator endlessly. Read more
🔬This is a nightly-only experimental API. (iter_array_chunks)
Returns an iterator over N elements of the iterator at a time. Read more
Sums the elements of an iterator. Read more
Iterates over the entire iterator, multiplying all the elements Read more
🔬This is a nightly-only experimental API. (iter_order_by)
Lexicographically compares the elements of this Iterator with those of another with respect to the specified comparison function. Read more
Lexicographically compares the elements of this Iterator with those of another. Read more
🔬This is a nightly-only experimental API. (iter_order_by)
Lexicographically compares the elements of this Iterator with those of another with respect to the specified comparison function. Read more
Determines if the elements of this Iterator are equal to those of another. Read more
🔬This is a nightly-only experimental API. (iter_order_by)
Determines if the elements of this Iterator are equal to those of another with respect to the specified equality function. Read more
Determines if the elements of this Iterator are unequal to those of another. Read more
Determines if the elements of this Iterator are lexicographically less than those of another. Read more
Determines if the elements of this Iterator are lexicographically less or equal to those of another. Read more
Determines if the elements of this Iterator are lexicographically greater than those of another. Read more
Determines if the elements of this Iterator are lexicographically greater than or equal to those of another. Read more
🔬This is a nightly-only experimental API. (is_sorted)
Checks if the elements of this iterator are sorted using the given comparator function. Read more
🔬This is a nightly-only experimental API. (is_sorted)
Checks if the elements of this iterator are sorted using the given key extraction function. Read more
This method tests for self and other values to be equal, and is used by ==.
This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Start index bound. Read more
End index bound. Read more
Returns true if item is contained in the range. Read more

Auto Trait Implementations§

Blanket Implementations§

Gets the TypeId of self. Read more
Immutably borrows from an owned value. Read more
Mutably borrows from an owned value. Read more
Converts self into T using Into<T>. Read more
Causes self to use its Binary implementation when Debug-formatted.
Causes self to use its Display implementation when Debug-formatted.
Causes self to use its LowerExp implementation when Debug-formatted.
Causes self to use its LowerHex implementation when Debug-formatted.
Causes self to use its Octal implementation when Debug-formatted.
Causes self to use its Pointer implementation when Debug-formatted.
Causes self to use its UpperExp implementation when Debug-formatted.
Causes self to use its UpperHex implementation when Debug-formatted.
Formats each item in a sequence. Read more

Returns the argument unchanged.

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

The type of the elements being iterated over.
Which kind of iterator are we turning this into?
Creates an iterator from a value. Read more
Pipes by value. This is generally the method you want to use. Read more
Borrows self and passes that borrow into the pipe function. Read more
Mutably borrows self and passes that borrow into the pipe function. Read more
Borrows self, then passes self.borrow() into the pipe function. Read more
Mutably borrows self, then passes self.borrow_mut() into the pipe function. Read more
Borrows self, then passes self.as_ref() into the pipe function.
Mutably borrows self, then passes self.as_mut() into the pipe function.
Borrows self, then passes self.deref() into the pipe function.
Mutably borrows self, then passes self.deref_mut() into the pipe function.
Immutable access to a value. Read more
Mutable access to a value. Read more
Immutable access to the Borrow<B> of a value. Read more
Mutable access to the BorrowMut<B> of a value. Read more
Immutable access to the AsRef<R> view of a value. Read more
Mutable access to the AsMut<R> view of a value. Read more
Immutable access to the Deref::Target of a value. Read more
Mutable access to the Deref::Target of a value. Read more
Calls .tap() only in debug builds, and is erased in release builds.
Calls .tap_mut() only in debug builds, and is erased in release builds.
Calls .tap_borrow() only in debug builds, and is erased in release builds.
Calls .tap_borrow_mut() only in debug builds, and is erased in release builds.
Calls .tap_ref() only in debug builds, and is erased in release builds.
Calls .tap_ref_mut() only in debug builds, and is erased in release builds.
Calls .tap_deref() only in debug builds, and is erased in release builds.
Calls .tap_deref_mut() only in debug builds, and is erased in release builds.
The resulting type after obtaining ownership.
Creates owned data from borrowed data, usually by cloning. Read more
Uses borrowed data to replace owned data, usually by cloning. Read more
Attempts to convert self into T using TryInto<T>. Read more
The type returned in the event of a conversion error.
Performs the conversion.
The type returned in the event of a conversion error.
Performs the conversion.