Expand description
§Deku: Declarative binary reading and writing
Deriving a struct or enum with DekuRead and DekuWrite provides bit-level,
symmetric, serialization/deserialization implementations.
This allows the developer to focus on building and maintaining how the data is represented and manipulated and not on redundant, error-prone, parsing/writing code. This approach is especially useful when dealing with binary structures such as TLVs or network protocols. This allows the internal rustc compiler to choose the in-memory representation of the struct, while reading and writing can understand the struct in a “packed” C way.
Under the hood, many specializations are done in order to achieve performant code. For reading and writing bytes, the std library is used. When bit-level control is required, it makes use of the bitvec crate as the “Reader” and “Writer”.
For documentation and examples on available #[deku] attributes and features,
see attributes list
For more examples, see the examples folder!
§no_std
For use in no_std environments, alloc is the single feature which is required on deku.
§Example
Let’s read big-endian data into a struct, with fields containing different sizes, modify a value, and write it back. In this example we use from_bytes, but we could also use from_reader.
use deku::prelude::*;
#[derive(Debug, PartialEq, DekuRead, DekuWrite)]
#[deku(endian = "big")]
struct DekuTest {
#[deku(bits = 4)]
field_a: u8,
#[deku(bits = 4)]
field_b: u8,
field_c: u16,
}
let data: Vec<u8> = vec![0b0110_1001, 0xBE, 0xEF];
let (_rest, mut val) = DekuTest::from_bytes((data.as_ref(), 0)).unwrap();
assert_eq!(DekuTest {
field_a: 0b0110,
field_b: 0b1001,
field_c: 0xBEEF,
}, val);
val.field_c = 0xC0FE;
let data_out = val.to_bytes().unwrap();
assert_eq!(vec![0b0110_1001, 0xC0, 0xFE], data_out);§Composing
Deku structs/enums can be composed as long as they implement DekuReader / DekuWrite traits which
can be derived by using the DekuRead and DekuWrite Derive macros.
use deku::prelude::*;
#[derive(Debug, PartialEq, DekuRead, DekuWrite)]
#[deku(endian = "big")]
struct DekuTest {
header: DekuHeader,
data: DekuData,
}
#[derive(Debug, PartialEq, DekuRead, DekuWrite)]
#[deku(ctx = "endian: deku::ctx::Endian")] // context passed from `DekuTest` top-level endian
struct DekuHeader(u8);
#[derive(Debug, PartialEq, DekuRead, DekuWrite)]
#[deku(ctx = "endian: deku::ctx::Endian")] // context passed from `DekuTest` top-level endian
struct DekuData(u16);
let data: Vec<u8> = vec![0xAA, 0xEF, 0xBE];
let (_rest, mut val) = DekuTest::from_bytes((data.as_ref(), 0)).unwrap();
assert_eq!(DekuTest {
header: DekuHeader(0xAA),
data: DekuData(0xBEEF),
}, val);
let data_out = val.to_bytes().unwrap();
assert_eq!(data, data_out);Note that because we explicitly specify the endian on the top-level struct, we must pass the endian to all children via the context. Several attributes trigger this requirement, such as endian, bit_order, and bits. If you are getting errors of the format mismatched types, expected A, found B on the DekuRead and/or DekuWrite #[derive] attribute, then you need to update the ctx.
§Vec
Vec
bytes_read or bits_read
can also be used instead of count to read a specific size of each.
If the length of Vec changes, the original field specified in count will not get updated.
Calling .update() can be used to “update” the field!
use deku::prelude::*;
#[derive(Debug, PartialEq, DekuRead, DekuWrite)]
struct DekuTest {
#[deku(update = "self.data.len()")]
count: u8,
#[deku(count = "count")]
data: Vec<u8>,
}
let data: Vec<u8> = vec![0x02, 0xBE, 0xEF, 0xFF, 0xFF];
let (_rest, mut val) = DekuTest::from_bytes((data.as_ref(), 0)).unwrap();
assert_eq!(DekuTest {
count: 0x02,
data: vec![0xBE, 0xEF]
}, val);
let data_out = val.to_bytes().unwrap();
assert_eq!(vec![0x02, 0xBE, 0xEF], data_out);
// Pushing an element to data
val.data.push(0xAA);
assert_eq!(DekuTest {
count: 0x02, // Note: this value has not changed
data: vec![0xBE, 0xEF, 0xAA]
}, val);
let data_out = val.to_bytes().unwrap();
// Note: `count` is still 0x02 while 3 bytes got written
assert_eq!(vec![0x02, 0xBE, 0xEF, 0xAA], data_out);
// Use `update` to update `count`
val.update().unwrap();
assert_eq!(DekuTest {
count: 0x03,
data: vec![0xBE, 0xEF, 0xAA]
}, val);§Enums
As enums can have multiple variants, each variant must have a way to match on the incoming data.
First the “type” is read using id_type, then is matched against the
variants given id. What happens after is the same as structs!
This is implemented with the id, id_pat, default and id_type attributes. See these for more examples.
If no id is specified, the variant will default to it’s discriminant value.
If no variant can be matched and the default is not provided, a DekuError::Parse
error will be returned.
If no variant can be matched and the default is provided, a variant will be returned
based on the field marked with default.
Example:
use deku::prelude::*;
#[derive(Debug, PartialEq, DekuRead, DekuWrite)]
#[deku(id_type = "u8")]
enum DekuTest {
#[deku(id = 0x01)]
VariantA,
#[deku(id = 0x02)]
VariantB(u16),
}
let data: &[u8] = &[0x01, 0x02, 0xEF, 0xBE];
let mut cursor = Cursor::new(data);
let (_, val) = DekuTest::from_reader((&mut cursor, 0)).unwrap();
assert_eq!(DekuTest::VariantA , val);
// cursor now points at 0x02
let (_, val) = DekuTest::from_reader((&mut cursor, 0)).unwrap();
assert_eq!(DekuTest::VariantB(0xBEEF) , val);Of course, trivial c-style enums works just as well too:
#[derive(Debug, PartialEq, DekuRead, DekuWrite)]
#[deku(id_type = "u8", bits = 2, bit_order = "lsb")]
#[repr(u8)]
pub enum DekuTest {
VariantA = 0,
VariantB = 1,
VariantC = 2,
VariantD = 3
}
let data: &[u8] = &[0x0D]; // 00 00 11 01 => A A D B
let mut cursor = Cursor::new(data);
let mut reader = Reader::new(&mut cursor);
let val = DekuTest::from_reader_with_ctx(&mut reader, ()).unwrap();
assert_eq!(DekuTest::VariantB , val);
let val = DekuTest::from_reader_with_ctx(&mut reader, ()).unwrap();
assert_eq!(DekuTest::VariantD , val);
let val = DekuTest::from_reader_with_ctx(&mut reader, ()).unwrap();
assert_eq!(DekuTest::VariantA , val);§Context
Child parsers can get access to the parent’s parsed values using the ctx attribute
For more information see ctx attribute
Example:
use deku::prelude::*;
#[derive(DekuRead, DekuWrite)]
#[deku(ctx = "a: u8")]
struct Subtype {
#[deku(map = "|b: u8| -> Result<_, DekuError> { Ok(b + a) }")]
b: u8
}
#[derive(DekuRead, DekuWrite)]
struct Root {
a: u8,
#[deku(ctx = "*a")] // `a` is a reference
sub: Subtype
}
let data: &[u8] = &[0x01, 0x02];
let mut cursor = Cursor::new(data);
let (amt_read, value) = Root::from_reader((&mut cursor, 0)).unwrap();
assert_eq!(value.a, 0x01);
assert_eq!(value.sub.b, 0x01 + 0x02)§Read supported
Parsers can be created that directly read from a source implementing Read.
The crate no_std_io2 is re-exported as no_std_io for use in no_std environments.
This functions as an alias for std::io when not
using no_std.
#[derive(Debug, DekuRead, DekuWrite, PartialEq, Eq, Clone)]
#[deku(endian = "big")]
struct EcHdr {
magic: [u8; 4],
version: u8,
padding1: [u8; 3],
}
let mut file = File::options().read(true).open("file").unwrap();
let ec = EcHdr::from_reader((&mut file, 0)).unwrap();§Write supported
Parsers can be created that directly write to a source implementing Write.
#[derive(Debug, DekuRead, DekuWrite, PartialEq, Eq, Clone)]
#[deku(endian = "big")]
struct Hdr {
version: u8,
}
let hdr = Hdr { version: 0xf0 };
let mut file = File::options().write(true).open("file").unwrap();
hdr.to_writer(&mut Writer::new(file), ());§DekuSize
For types with a known, fixed size at compile-time, the DekuSize trait provides
constant SIZE_BITS and SIZE_BYTES values. This is useful for creating correctly sized
buffers in embedded or no_std,no_alloc environments where dynamic allocation is not available.
use deku::prelude::*;
#[derive(DekuRead, DekuWrite, DekuSize)]
#[deku(endian = "big")]
struct Message {
msg_type: u8,
payload: [u8; 16],
checksum: u16,
}
assert_eq!(Message::SIZE_BYTES, Some(19));
const BUFFER_SIZE: usize = Message::SIZE_BYTES.unwrap();
let mut buffer = [0u8; BUFFER_SIZE];
let msg = Message {
msg_type: 0x01,
payload: [0xFF; 16],
checksum: 0xABCD,
};
let written = msg.to_slice(&mut buffer).unwrap();
assert_eq!(written, BUFFER_SIZE);For enums, SIZE_BITS represents the discriminant plus the maximum variant size:
use deku::prelude::*;
#[derive(DekuRead, DekuWrite, DekuSize)]
#[deku(id_type = "u8")]
enum Packet {
#[deku(id = "1")]
Small { data: u16 },
#[deku(id = "2")]
Large { data: u64 },
}
assert_eq!(Packet::SIZE_BYTES, Some(9));
const MAX_SIZE: usize = Packet::SIZE_BYTES.unwrap();
let mut buffer = [0u8; MAX_SIZE];Note: Variable-size types like Vec do not implement DekuSize as their size
cannot be known at compile-time.
§Internal variables and previously read fields
Along similar lines to Context variables, previously read variables are exposed and can be referenced:
Example:
#[derive(DekuRead)]
struct DekuTest {
num_items: u8,
#[deku(count = "num_items")]
items: Vec<u16>,
}The following variables are internals which can be used in attributes accepting
tokens such as reader, writer, map, count, etc.
These are provided as a convenience to the user.
Always included:
Conditionally included if referenced:
deku::bit_offset: usize- Current bit offset from the inputdeku::byte_offset: usize- Current byte offset from the input
Example:
#[derive(DekuRead)]
#[deku(ctx = "size: u32")]
pub struct EncodedString {
encoding: u8,
#[deku(count = "size as usize - deku::byte_offset")]
data: Vec<u8>
}§Debugging decoders with the logging feature.
If you are having trouble understanding what causes a Deku parse error, you may find the logging
feature useful.
To use it, you will need to:
- enable the
loggingCargo feature for your Deku dependency - import the
logcrate and a compatible logging library
For example, to log with env_logger, the dependencies in your Cargo.toml might look like:
deku = { version = "*", features = ["logging"] }
log = "*"
env_logger = "*"Then you’d call env_logger::init() or env_logger::try_init() prior to doing Deku decoding.
Deku uses the trace logging level, so if you run your application with RUST_LOG=trace in your
environment, you will see logging messages as Deku does its deserialising.
§Reducing parser code size
- With the use of the
no-assert-stringfeature, you can remove the strings Deku adds to assertion errors. DekuErrorwhenever possible will use a'static str, to make the errors compile away when following a guide such as min-sized-rust.
§Performance: Compile without bitvec
The feature bits enables the bitvec crate to use when reading and writing, which is enabled by default.
This however slows down the reading and writing process if your code doesn’t use bits and the bit_offset
in from_bytes.
§NoSeek
Unseekable streams such as TcpStream are supported through the NoSeek wrapper.
Re-exports§
pub use crate::error::DekuError;
Modules§
- attributes
- A documentation-only module for #[deku] attributes
- bitvec
- re-export of bitvec
- ctx
- Types for context representation See ctx attribute for more information.
- error
- Error module
- no_
std_ io - re-export of no_std_io2
- noseek
- Wrapper type that provides a fake
Seekimplementation. - prelude
- Crate prelude
- reader
- Reader for reader functions
- writer
- Writer for writer functions
Macros§
- deku_
error - Abstract over alloc vs no-alloc for handling of error strings
Structs§
- Bounded
BitVec - Like BitVec but with bounded, local storage
Traits§
- Deku
Container Read - “Reader” trait: implemented on DekuRead struct and enum containers. A
containeris a type which doesn’t need any context information. - Deku
Container Write - “Writer” trait: implemented on DekuWrite struct and enum containers. A
containeris a type which doesn’t need any context information. - Deku
Enum Ext - “Extended Enum” trait: obtain additional enum information
- Deku
Reader - “Reader” trait: read bytes and bits from
no_std_io::Reader - Deku
Size - Trait for types with a known, fixed binary size at compile-time
- Deku
Update - “Updater” trait: apply mutations to a type
- Deku
Writer - “Writer” trait: write from type to bytes
Attribute Macros§
- deku_
derive - Entry function for
deku_deriveproc-macro This attribute macro is used to deriveDekuReadandDekuWritewhile removing temporary variables.