1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
//! This module contains method implementations for slice-like deferred references on [Deferred].

use crate::{Deferred, PointerLength, Reference, SliceLike, SlicePointerIndex};

/// # Methods only available for deferred references to slices and arrays
/// [Deferred] overrides some of the standard methods for arrays and slices, in order to allow
/// for deferred access to disjoint indices. The idea is that if you only need a reference
/// to a specific element or subslice, then it is not necessary to create a reference to the
/// entire array or slice. The overriden methods are listed below. In addition to the overriden
/// methods listed below, [Deferred] also overrides the [Index](core::ops::Index) and
/// [IndexMut](core::ops::IndexMut) traits on slices and arrays. This allows for direct access
/// to disjoint subslices, without triggering undefined behavior, using the syntactic sugar of
/// Rust:
/// ```
/// use deferred_reference::Deferred;
/// let mut buffer = [0u8; 300];
/// let mut a = Deferred::from(&mut buffer); // a mutable deferred reference
/// let b = unsafe { a.clone_unchecked().into_ref() }; // immutable deferred reference
/// let mut c = unsafe { a.clone_unchecked() }; // another mutable deferred reference
/// let mut_ref1 = &mut a[0..100];
/// assert_eq!(&[0u8; 100], &b[100..200]);
/// c[200..].copy_from_slice(&[1u8; 100]);
/// assert_eq!(&mut [1u8; 100], &mut c[200..]);
/// assert_eq!(&mut [0u8; 100], mut_ref1);
/// ```
/// The above example also works on stable Rust, because `buffer` is an array. However, for slices
/// this will not work on stable Rust, at least not until the
/// [`slice_ptr_len`](https://github.com/rust-lang/rust/issues/71146) feature is stabilized.
/// On nightly Rust, this is already possible with slices, too. In order to work with slices
/// on stable Rust (or on nightly Rust without the unstable features disabled), you will need to
/// insert an explicit call to [Deref::deref](core::ops::Deref::deref) or
/// [DerefMut::deref_mut](core::ops::DerefMut::deref_mut) in order to reach the slice,
/// which will create a reference to the entire slice (without this extra step, you will get a panic).
/// This is made explicit like this to avoid ambiguity when a method resolves to a subslice or
/// the entire slice. Here is an example of how to use [Deferred] on stable Rust with slices,
/// under the condition that indexing operations are disjoint in lifetime (instead of disjoint
/// w.r.t. the indices):
/// ```
/// use deferred_reference::Deferred;
/// use core::ops::{Deref, DerefMut};
/// let mut buffer = [0u8; 300];
/// let mut a: Deferred<&mut [u8]> = Deferred::from(&mut buffer).into(); // a slice
/// let b = unsafe { a.clone_unchecked().into_ref() }; // immutable deferred reference
/// let mut c = unsafe { a.clone_unchecked() }; // another mutable deferred reference;
/// let mut_ref1 = &mut a.deref_mut()[0..100]; // accesses `a` for lifetime 'a
/// assert_eq!(&mut [0u8; 100], &mut mut_ref1[0..100]); // lifetime 'a ends after this statement
/// assert_eq!(&[0u8; 100], &b.deref()[100..200]); // accesses `b` for short-lived lifetime 'b
/// c.deref_mut()[200..].copy_from_slice(&[1u8; 100]); // accesses `c` for short-lived lifetime 'c
/// assert_eq!(&mut [1u8; 100], &mut c.deref_mut()[200..]); // accesses `c` for lifetime 'd
/// ```
impl<T> Deferred<T>
where
    T: Reference,
    T::Target: SliceLike,
{
    /// Obtains the length of the array or slice that this `Deferred` points to, without creating
    /// an intermediate reference to the array or slice.
    ///
    /// # Example
    /// ```
    /// use core::cell::UnsafeCell;
    /// use deferred_reference::{Defer, Deferred};
    /// let buffer = UnsafeCell::new([0u8; 1024]);
    /// let deferred: Deferred<_> = buffer.defer();
    /// assert_eq!(1024, deferred.len());
    /// ```
    ///
    /// # Panics
    /// As of yet, the length of slices (which are a dynamically sized type, unlike fixed size arrays)
    /// can only be accessed when the unstable `Cargo.toml` feature `slice_ptr_len` or `unstable` is enabled.
    /// If you call this method on a deferred slice without one of these features enabled, then this method will panic.
    /// This method will become panic-less for slices when the `slice_ptr_len` feature lands in Rust stable,
    /// see <https://github.com/rust-lang/rust/issues/71146>. It is still possible to access the length
    /// of a fixed sized array `[T; N]` without dereferencing the array in stable Rust (meaning, even
    /// without the use of unstable features and without risk of panics).
    pub fn len(&self) -> usize {
        PointerLength::len(self.as_ptr())
    }

    /// Returns a reference to an element or subslice depending on the type of
    /// index, without creating a reference to the other elements in the slice.
    ///
    /// - If given a position, returns a reference to the element at that
    ///   position or `None` if out of bounds.
    /// - If given a range, returns the subslice corresponding to that range,
    ///   or `None` if out of bounds.
    ///
    /// # Examples
    ///
    /// ```
    /// use deferred_reference::Deferred;
    /// let v = Deferred::from(&[10, 40, 30]);
    /// assert_eq!(Some(&40), v.get(1));
    /// assert_eq!(Some(&[10, 40][..]), v.get(0..2));
    /// assert_eq!(None, v.get(3));
    /// assert_eq!(None, v.get(0..4));
    /// ```
    #[inline]
    pub fn get<I>(&self, index: I) -> Option<&I::Output>
    where
        I: SlicePointerIndex<T::Target>,
    {
        index.get(self.as_ptr()).map(|ptr| {
            // SAFETY: `ptr` is checked to be in bounds, so this is safe
            unsafe { &*ptr }
        })
    }

    /// Returns a reference to an element or subslice, without doing bounds checking and without
    /// creating a reference to the other elements in the slice.
    ///
    /// For a safe alternative see [`get`].
    ///
    /// # Safety
    ///
    /// Calling this method with an out-of-bounds index is *[undefined behavior]*
    /// even if the resulting reference is not used.
    ///
    /// [`get`]: #method.get
    /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
    ///
    /// # Examples
    ///
    /// ```
    /// use deferred_reference::Deferred;
    /// let x = Deferred::from(&[1, 2, 4]);
    ///
    /// unsafe {
    ///     assert_eq!(x.get_unchecked(1), &2);
    /// }
    /// ```
    #[inline]
    pub fn get_unchecked<I>(&self, index: I) -> &I::Output
    where
        I: SlicePointerIndex<T::Target>,
    {
        // SAFETY: the caller must uphold most of the safety requirements for `get_unchecked`;
        // SAFETY: the slice is dereferencable because `self.as_ptr()` is a safe pointer.
        // SAFETY: the returned pointer is safe because impls of `SlicePointerIndex` have to guarantee that it is.
        unsafe {
            &*index.get_unchecked(self.as_ptr())
        }
    }

    /// Divides one deferred slice into two deferred slices at an index, without doing bounds checking
    /// and without creating any intermediate references.
    ///
    /// The first will contain all indices from `[0, mid)` (excluding
    /// the index `mid` itself) and the second will contain all
    /// indices from `[mid, len)` (excluding the index `len` itself).
    ///
    /// For a safe alternative see [`split_at`].
    ///
    /// # Safety
    ///
    /// Calling this method with an out-of-bounds index is *[undefined behavior]*
    /// even if the resulting reference is not used. The caller has to ensure that
    /// `0 <= mid <= self.len()`.
    ///
    /// [`split_at`]: #method.split_at
    /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
    ///
    /// # Examples
    ///
    /// ```
    /// use deferred_reference::Deferred;
    /// let v = [1, 2, 3, 4, 5, 6];
    /// let deferred = Deferred::new(&v);
    ///
    /// unsafe {
    ///    let (left, right) = deferred.split_at_unchecked(0);
    ///    assert_eq!(*left, []);
    ///    assert_eq!(*right, [1, 2, 3, 4, 5, 6]);
    /// }
    ///
    /// unsafe {
    ///     let (left, right) = deferred.split_at_unchecked(2);
    ///     assert_eq!(*left, [1, 2]);
    ///     assert_eq!(*right, [3, 4, 5, 6]);
    /// }
    ///
    /// unsafe {
    ///     let (left, right) = deferred.split_at_unchecked(6);
    ///     assert_eq!(*left, [1, 2, 3, 4, 5, 6]);
    ///     assert_eq!(*right, []);
    /// }
    /// ```
    #[inline]
    pub unsafe fn split_at_unchecked(&self, mid: usize) -> (Deferred<&[<T::Target as SliceLike>::Element]>, Deferred<&[<T::Target as SliceLike>::Element]>){
        // SAFETY: Caller has to check that `0 <= mid <= self.len()`.
        // SAFETY: the other invariants are then upheld by SlicePointerIndex and Deferred.
        (
            Deferred::from_raw((..mid).get_unchecked(self.as_ptr())),
            Deferred::from_raw((mid..).get_unchecked(self.as_ptr()))
        )
    }

    /// Divides one deferred slice into two deferred slices at an index,
    /// without creating any intermediate references.
    ///
    /// The first will contain all indices from `[0, mid)` (excluding
    /// the index `mid` itself) and the second will contain all
    /// indices from `[mid, len)` (excluding the index `len` itself).
    ///
    /// # Panics
    ///
    /// Panics if `mid > len`.
    ///
    /// # Examples
    ///
    /// ```
    /// use deferred_reference::Deferred;
    /// let v = [1, 2, 3, 4, 5, 6];
    /// let deferred = Deferred::new(&v);
    /// {
    ///    let (left, right) = deferred.split_at(0);
    ///    assert_eq!(*left, []);
    ///    assert_eq!(*right, [1, 2, 3, 4, 5, 6]);
    /// }
    ///
    /// {
    ///     let (left, right) = deferred.split_at(2);
    ///     assert_eq!(*left, [1, 2]);
    ///     assert_eq!(*right, [3, 4, 5, 6]);
    /// }
    ///
    /// {
    ///     let (left, right) = deferred.split_at(6);
    ///     assert_eq!(*left, [1, 2, 3, 4, 5, 6]);
    ///     assert_eq!(*right, []);
    /// }
    ///
    /// {
    ///     // this method overrides the `<[T]>::split_at` method from the core library
    ///     // if you rather have actual slices than deferred slices, insert a `deref` like so:
    ///     use core::ops::Deref;
    ///     let (left, right) /* : (&[_], &[_]) */ = deferred.deref().split_at(2);
    ///     assert_eq!(left, [1, 2]);
    ///     assert_eq!(right, [3, 4, 5, 6]);
    /// }
    /// ```
    #[inline]
    pub fn split_at(&self, mid: usize) -> (Deferred<&[<T::Target as SliceLike>::Element]>, Deferred<&[<T::Target as SliceLike>::Element]>) {
        assert!(mid <= self.len());
        // SAFETY: `[ptr; mid]` and `[mid; len]` are inside `self`, which
        // SAFETY: fulfills the requirements of `split_at_unchecked`.
        unsafe { self.split_at_unchecked(mid) }
    }
}

/// # Methods only available for deferred _mutable_ references to slices and arrays
impl<T> Deferred<&mut T>
where
    T: SliceLike + ?Sized,
{
    /// Returns a mutable reference to an element or subslice depending on the
    /// type of index (see [`get`]) or `None` if the index is out of bounds.
    /// This method will not create a reference to the other elements in the slice.
    ///
    /// [`get`]: #method.get
    ///
    /// # Examples
    ///
    /// ```
    /// use deferred_reference::Deferred;
    /// use core::ops::Deref;
    /// let mut x = [0, 1, 2];
    /// let mut x = Deferred::from(&mut x);
    ///
    /// if let Some(elem) = x.get_mut(1) {
    ///     *elem = 42;
    /// }
    /// assert_eq!(x.deref(), &[0, 42, 2]);
    /// ```
    #[inline]
    pub fn get_mut<I>(&mut self, index: I) -> Option<&mut I::Output>
    where
        I: SlicePointerIndex<T>,
    {
        index.get_mut(self.as_mut_ptr()).map(|ptr| {
            // SAFETY: `ptr` is checked to be in bounds, so this is safe
            unsafe { &mut *ptr }
        })
    }

    /// Returns a mutable reference to an element or subslice, without doing bounds checking and without
    /// creating a reference to the other elements in the slice.
    ///
    /// For a safe alternative see [`get_mut`].
    ///
    /// # Safety
    ///
    /// Calling this method with an out-of-bounds index is *[undefined behavior]*
    /// even if the resulting reference is not used.
    ///
    /// [`get_mut`]: #method.get_mut
    /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
    ///
    /// # Examples
    ///
    /// ```
    /// use deferred_reference::Deferred;
    /// use core::ops::Deref;
    /// let mut x = [1, 2, 4];
    /// let mut x = Deferred::from(&mut x);
    ///
    /// unsafe {
    ///     let elem = x.get_unchecked_mut(1);
    ///     *elem = 13;
    /// }
    /// assert_eq!(x.deref(), &[1, 13, 4]);
    /// ```
    #[inline]
    pub unsafe fn get_unchecked_mut<I>(&mut self, index: I) -> &mut I::Output
    where
        I: SlicePointerIndex<T>,
    {
        // SAFETY: the caller must uphold the safety requirements for `get_unchecked_mut`;
        // SAFETY: the slice is dereferencable because `self` is a safe pointer.
        // SAFETY: The returned pointer is safe because impls of `SlicePointerIndex` have to guarantee that it is.
        &mut *index.get_unchecked_mut(self.as_mut_ptr())
    }

    /// Divides one deferred mutable slice into two deferred mutable slice at an index, without doing bounds checking
    /// and without creating any intermediate references.
    ///
    /// The first will contain all indices from `[0, mid)` (excluding
    /// the index `mid` itself) and the second will contain all
    /// indices from `[mid, len)` (excluding the index `len` itself).
    ///
    /// For a safe alternative see [`split_at_mut`].
    ///
    /// # Safety
    ///
    /// Calling this method with an out-of-bounds index is *[undefined behavior]*
    /// even if the resulting reference is not used. The caller has to ensure that
    /// `0 <= mid <= self.len()`.
    ///
    /// [`split_at_mut`]: #method.split_at_mut
    /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
    ///
    /// # Examples
    ///
    /// ```
    /// use deferred_reference::Deferred;
    /// let mut v = [1, 0, 3, 0, 5, 6];
    /// let mut deferred = Deferred::new_mut(&mut v);
    /// // scoped to restrict the lifetime of the borrows
    /// unsafe {
    ///     let (mut left, mut right) = deferred.split_at_mut_unchecked(2);
    ///     assert_eq!(*left, [1, 0]);
    ///     assert_eq!(*right, [3, 0, 5, 6]);
    ///     left[1] = 2;
    ///     right[1] = 4;
    /// }
    /// assert_eq!(*deferred, [1, 2, 3, 4, 5, 6]);
    /// ```
    #[inline]
    pub unsafe fn split_at_mut_unchecked(&mut self, mid: usize) -> (Deferred<&mut [T::Element]>, Deferred<&mut [T::Element]>) {
        // SAFETY: Caller has to check that `0 <= mid <= self.len()`.
        // SAFETY: the other invariants are then upheld by SlicePointerIndex and Deferred.
        (
            Deferred::from_raw_mut((..mid).get_unchecked_mut(self.as_mut_ptr())),
            Deferred::from_raw_mut((mid..).get_unchecked_mut(self.as_mut_ptr()))
        )
    }

    /// Divides one mutable slice into two at an index.
    ///
    /// The first will contain all indices from `[0, mid)` (excluding
    /// the index `mid` itself) and the second will contain all
    /// indices from `[mid, len)` (excluding the index `len` itself).
    ///
    /// # Panics
    ///
    /// Panics if `mid > len`.
    ///
    /// # Examples
    ///
    /// ```
    /// use deferred_reference::Deferred;
    /// let mut v = [1, 0, 3, 0, 5, 6];
    /// let mut deferred = Deferred::new_mut(&mut v);
    /// let (mut left, mut right) = deferred.split_at_mut(2);
    /// assert_eq!(*left, [1, 0]);
    /// assert_eq!(*right, [3, 0, 5, 6]);
    /// left[1] = 2;
    /// right[1] = 4;
    /// assert_eq!(*deferred, [1, 2, 3, 4, 5, 6]);
    /// // this method overrides the `<[T]>::split_at_mut` method from the core library
    /// // if you rather have actual slices than deferred slices, insert a `deref_mut` like so:
    /// use core::ops::DerefMut;
    /// let (left, right) /* : (&mut [_], &mut [_]) */ = deferred.deref_mut().split_at(2);
    /// assert_eq!(*left, [1, 2]);
    /// assert_eq!(*right, [3, 4, 5, 6]);
    /// ```
    #[inline]
    pub fn split_at_mut(&mut self, mid: usize) -> (Deferred<&mut [T::Element]>, Deferred<&mut [T::Element]>) {
        assert!(mid <= self.len());
        // SAFETY: `[ptr; mid]` and `[mid; len]` are inside `self`, which
        // SAFETY: fulfills the requirements of `split_at_mut_unchecked`.
        unsafe { self.split_at_mut_unchecked(mid) }
    }
}

#[cfg(test)]
mod tests {
    use alloc::vec::Vec;
    use alloc::boxed::Box;
    use core::cell::UnsafeCell;
    use core::ops::{Deref, DerefMut};
    use crate::{DeferMut, Deferred};

    #[test]
    fn doctest1() {
        let mut buffer = [0u8; 300];
        let mut a = Deferred::from(&mut buffer); // a mutable deferred reference
        let b = unsafe { a.clone_unchecked().into_ref() }; // immutable deferred reference
        let mut c = unsafe { a.clone_unchecked() }; // another mutable deferred reference
        let mut_ref1 = &mut a[0..100];
        assert_eq!(&[0u8; 100], &b[100..200]);
        c[200..].copy_from_slice(&[1u8; 100]);
        assert_eq!(&mut [1u8; 100], &mut c[200..]);
        assert_eq!(&mut [0u8; 100], mut_ref1);
    }

    #[test]
    fn doctest2() {
        let mut buffer = [0u8; 300];
        let mut a: Deferred<&mut [u8]> = Deferred::from(&mut buffer).into(); // a mutable deferred reference
        let b = unsafe { a.clone_unchecked().into_ref() }; // immutable deferred reference
        let mut c = unsafe { a.clone_unchecked() }; // another mutable deferred reference;
        let mut_ref1 = &mut a.deref_mut()[0..100]; // accesses `a` for lifetime 'a
        assert_eq!(&mut [0u8; 100], &mut mut_ref1[0..100]); // lifetime 'a ends after this statement
        assert_eq!(&[0u8; 100], &b.deref()[100..200]); // accesses `b` for short-lived lifetime 'b
        c.deref_mut()[200..].copy_from_slice(&[1u8; 100]); // accesses `c` for short-lived lifetime 'c
        assert_eq!(&mut [1u8; 100], &mut c.deref_mut()[200..]); // accesses `c` for short-lived lifetime 'd
    }
    

    #[test]
    fn len_array() {
        let mut buffer = [0u8; 1024];
        let ptr = core::ptr::addr_of!(buffer);
        let deferred = unsafe { Deferred::from_raw(ptr) };
        assert_eq!(1024, deferred.len());

        let ptr = core::ptr::addr_of_mut!(buffer);
        let deferred = unsafe { Deferred::from_raw_mut(ptr) };
        assert_eq!(1024, deferred.len());
    }

    #[test]
    fn len_slice() {
        let mut buffer = Vec::with_capacity(1024);
        buffer.resize(1024, 0u8);
        let ptr = &buffer[..] as *const [u8];
        let deferred = unsafe { Deferred::from_raw(ptr) };
        Deferred::len(&deferred);
        assert_eq!(1024, deferred.len());

        let ptr = core::ptr::slice_from_raw_parts_mut(buffer.as_mut_ptr(), buffer.len());
        let deferred = unsafe { Deferred::from_raw_mut(ptr) };
        assert_eq!(1024, deferred.len());
    }

    /// Tests that length of arrays can be obtained without dereferencing them.
    #[test]
    fn test_array_len_ub() {
        let buffer = UnsafeCell::new([0u8; 1024]);
        // SAFETY: there are no references active whatsoever, so this is safe.
        let mut deferred = unsafe { buffer.defer_mut() };
        // SAFETY: we launder the lifetime of the mutable reference, but we promise not to alias it
        let mut_borrow = unsafe { &mut *(deferred.deref_mut() as *mut [u8; 1024]) };
        assert_eq!(1024, deferred.len()); // should not create any references to pointee
        // ensure that mutable borrow persists until end of this function:
        assert_eq!(0, mut_borrow[0]);
    }

    /// Tests that length of slices can be obtained without dereferencing them.
    #[test]
    fn test_slice_len_ub() {
        let mut vector = Vec::with_capacity(1024);
        vector.resize(1024, 0u8);
        let boxed_slice = vector.into_boxed_slice();
        // SAFETY: UnsafeCell is #[repr(transparent)] so this is safe.
        let buffer: Box<UnsafeCell<[u8]>> = unsafe { core::mem::transmute(boxed_slice) };
        // SAFETY: we won't dereference this deferred reference.
        let mut deferred = unsafe { buffer.defer_mut() };
        // SAFETY: we launder the lifetime of a mutable reference, but we promise not to alias it
        let mut_borrow = unsafe { &mut *(deferred.deref_mut() as *mut [u8]) };
        assert_eq!(1024, deferred.len()); // should not create any references to pointee
        // ensure that mutable borrow persists until end of this function:
        assert_eq!(0, mut_borrow[0]);
    }

    #[test]
    fn core_split_at_mut() {
        let mut buffer = [1, 2, 3];
        let mut_ref = &mut buffer;
        let (left, right) = mut_ref.split_at_mut(1);
        assert_eq!(&mut [1], left);
        assert_eq!(&mut [2, 3], right);
        assert_eq!([1, 2, 3], *mut_ref);
    }
}