deep_causality_num/algebra/module.rs
1/*
2 * SPDX-License-Identifier: MIT
3 * Copyright (c) "2025" . The DeepCausality Authors and Contributors. All Rights Reserved.
4 */
5use crate::{AbelianGroup, Ring};
6use core::ops::{Mul, MulAssign};
7
8/// Represents a **Module** over a `Ring`.
9///
10/// A module is a generalization of a vector space, where the scalars are
11/// elements of a `Ring` `R` rather than being restricted to a `Field`.
12///
13/// # Mathematical Definition
14///
15/// A left module `M` over a ring `R` consists of an abelian group `(M, +)` and
16/// an operation `R × M → M` (scalar multiplication) such that for all
17/// `r, s` in `R` and `x, y` in `M`, the following axioms hold:
18///
19/// 1. `r * (x + y) = r*x + r*y`
20/// 2. `(r + s) * x = r*x + s*x`
21/// 3. `(r * s) * x = r * (s * x)`
22/// 4. `1 * x = x` (if `R` is a unital ring)
23///
24/// ## Structure in this Crate
25/// - The "vectors" (`Self`) form an `AbelianGroup`.
26/// - The "scalars" (`R`) form a `Ring`.
27/// - Scalar multiplication is provided by implementing `Mul<R>` and `MulAssign<R>`.
28///
29/// ## Examples
30/// - Any `AbelianGroup` `G` is a module over the ring of integers `Z`.
31/// - A vector space is a module where the ring of scalars is a `Field`.
32/// - `Complex<T>` is a module over the `RealField` `T`.
33pub trait Module<R: Ring>: AbelianGroup + Mul<R, Output = Self> + MulAssign<R> {
34 /// Scales the module element by a scalar from the ring `R`.
35 ///
36 /// This is a convenience method that clones `self` and applies the `*`
37 /// operator for scalar multiplication.
38 ///
39 /// # Arguments
40 /// * `scalar`: The scalar value of type `R` to multiply by.
41 ///
42 /// # Returns
43 /// A new element of `Self` representing the scaled result.
44 fn scale(&self, scalar: R) -> Self {
45 // We must clone because `Mul` usually consumes `self` (value semantics),
46 // but `scale` takes `&self` (reference semantics).
47 // We know Self is Clone because AbelianGroup -> AddGroup -> Clone.
48 self.clone() * scalar
49 }
50
51 /// Scales the module element in-place by a scalar from the ring `R`.
52 ///
53 /// This is a convenience method that uses the `MulAssign` (`*=`) operator
54 /// for in-place scalar multiplication. This is often more efficient for
55 /// large data structures like tensors as it avoids allocation.
56 ///
57 /// # Arguments
58 /// * `scalar`: The scalar value of type `R` to multiply by.
59 fn scale_mut(&mut self, scalar: R) {
60 *self *= scalar; // Uses MulAssign
61 }
62}
63
64// Blanket implementation for any type that satisfies the bounds
65impl<V, R> Module<R> for V
66where
67 V: AbelianGroup + Mul<R, Output = V> + MulAssign<R>,
68 R: Ring,
69{
70}