dcrypt_algorithms/ec/p256/point.rs
1//! P-256 elliptic curve point operations
2
3use crate::ec::p256::{
4 constants::{
5 P256_FIELD_ELEMENT_SIZE, P256_POINT_COMPRESSED_SIZE, P256_POINT_UNCOMPRESSED_SIZE,
6 },
7 field::FieldElement,
8 scalar::Scalar,
9};
10use crate::error::{validate, Error, Result};
11use dcrypt_params::traditional::ecdsa::NIST_P256;
12use subtle::{Choice, ConditionallySelectable};
13
14/// Format of a serialized elliptic curve point
15#[derive(Debug, Clone, Copy, PartialEq, Eq)]
16pub enum PointFormat {
17 /// Identity point (all zeros)
18 Identity,
19 /// Uncompressed format: 0x04 || x || y
20 Uncompressed,
21 /// Compressed format: 0x02/0x03 || x
22 Compressed,
23}
24
25/// P-256 elliptic curve point in affine coordinates (x, y)
26///
27/// Represents points on the NIST P-256 curve. The special point at infinity
28/// (identity element) is represented with is_identity = true.
29#[derive(Clone, Debug)]
30pub struct Point {
31 /// Whether this point is the identity element (point at infinity)
32 pub(crate) is_identity: Choice,
33 /// X coordinate in affine representation
34 pub(crate) x: FieldElement,
35 /// Y coordinate in affine representation
36 pub(crate) y: FieldElement,
37}
38
39/// P-256 point in Jacobian projective coordinates (X:Y:Z) for efficient arithmetic
40///
41/// Jacobian coordinates represent affine point (x,y) as (X:Y:Z) where:
42/// - x = X/Z²
43/// - y = Y/Z³
44/// - Point at infinity has Z = 0
45///
46/// This representation allows for efficient point addition and doubling
47/// without expensive field inversions during intermediate calculations.
48#[derive(Clone, Copy, Debug)]
49pub(crate) struct ProjectivePoint {
50 /// Whether this point is the identity element (point at infinity)
51 is_identity: Choice,
52 /// X coordinate in Jacobian representation
53 x: FieldElement,
54 /// Y coordinate in Jacobian representation
55 y: FieldElement,
56 /// Z coordinate (projective factor)
57 z: FieldElement,
58}
59
60impl PartialEq for Point {
61 /// Constant-time equality comparison for elliptic curve points
62 ///
63 /// Handles the special case where either point is the identity element.
64 /// For regular points, compares both x and y coordinates.
65 fn eq(&self, other: &Self) -> bool {
66 // If either is identity, both must be identity to be equal
67 let self_is_identity: bool = self.is_identity.into();
68 let other_is_identity: bool = other.is_identity.into();
69
70 if self_is_identity || other_is_identity {
71 return self_is_identity == other_is_identity;
72 }
73
74 // Otherwise compare coordinates
75 self.x == other.x && self.y == other.y
76 }
77}
78
79impl Point {
80 /// Create a new elliptic curve point from uncompressed coordinates
81 ///
82 /// Validates that the given (x, y) coordinates satisfy the P-256 curve equation:
83 /// y² = x³ - 3x + b (mod p)
84 ///
85 /// Returns an error if the point is not on the curve.
86 pub fn new_uncompressed(
87 x: &[u8; P256_FIELD_ELEMENT_SIZE],
88 y: &[u8; P256_FIELD_ELEMENT_SIZE],
89 ) -> Result<Self> {
90 let x_fe = FieldElement::from_bytes(x)?;
91 let y_fe = FieldElement::from_bytes(y)?;
92
93 // Validate that the point lies on the curve
94 if !Self::is_on_curve(&x_fe, &y_fe) {
95 return Err(Error::param(
96 "P-256 Point",
97 "Point coordinates do not satisfy curve equation",
98 ));
99 }
100
101 Ok(Point {
102 is_identity: Choice::from(0),
103 x: x_fe,
104 y: y_fe,
105 })
106 }
107
108 /// Create the identity element (point at infinity)
109 ///
110 /// The identity element serves as the additive neutral element
111 /// for the elliptic curve group operation.
112 pub fn identity() -> Self {
113 Point {
114 is_identity: Choice::from(1),
115 x: FieldElement::zero(),
116 y: FieldElement::zero(),
117 }
118 }
119
120 /// Check if this point is the identity element
121 pub fn is_identity(&self) -> bool {
122 self.is_identity.into()
123 }
124
125 /// Get the x-coordinate as a byte array in big-endian format
126 pub fn x_coordinate_bytes(&self) -> [u8; P256_FIELD_ELEMENT_SIZE] {
127 self.x.to_bytes()
128 }
129
130 /// Get the y-coordinate as a byte array in big-endian format
131 pub fn y_coordinate_bytes(&self) -> [u8; P256_FIELD_ELEMENT_SIZE] {
132 self.y.to_bytes()
133 }
134
135 /// Detect point format from serialized bytes
136 ///
137 /// Analyzes the leading byte and length to determine the serialization format.
138 /// Useful for handling points that could be in either compressed or uncompressed form.
139 ///
140 /// # Returns
141 /// - `Ok(PointFormat)` indicating the detected format
142 /// - `Err` if the format is invalid or unrecognized
143 pub fn detect_format(bytes: &[u8]) -> Result<PointFormat> {
144 if bytes.is_empty() {
145 return Err(Error::param("P-256 Point", "Empty point data"));
146 }
147
148 match (bytes[0], bytes.len()) {
149 (0x00, P256_POINT_UNCOMPRESSED_SIZE) => {
150 // Check if all bytes are zero (identity encoding)
151 if bytes.iter().all(|&b| b == 0) {
152 Ok(PointFormat::Identity)
153 } else {
154 Err(Error::param(
155 "P-256 Point",
156 "Invalid identity point encoding",
157 ))
158 }
159 }
160 (0x04, P256_POINT_UNCOMPRESSED_SIZE) => Ok(PointFormat::Uncompressed),
161 (0x02 | 0x03, P256_POINT_COMPRESSED_SIZE) => Ok(PointFormat::Compressed),
162 _ => Err(Error::param(
163 "P-256 Point",
164 "Unknown or malformed point format",
165 )),
166 }
167 }
168
169 /// Serialize point to uncompressed format: 0x04 || x || y
170 ///
171 /// The uncompressed point format is:
172 /// - 1 byte: 0x04 (uncompressed indicator)
173 /// - 32 bytes: x-coordinate (big-endian)
174 /// - 32 bytes: y-coordinate (big-endian)
175 ///
176 /// The identity point is represented as all zeros.
177 pub fn serialize_uncompressed(&self) -> [u8; P256_POINT_UNCOMPRESSED_SIZE] {
178 let mut result = [0u8; P256_POINT_UNCOMPRESSED_SIZE];
179
180 // Special encoding for the identity element
181 if self.is_identity() {
182 return result; // All zeros represents identity
183 }
184
185 // Standard uncompressed format: 0x04 || x || y
186 result[0] = 0x04;
187 result[1..33].copy_from_slice(&self.x.to_bytes());
188 result[33..65].copy_from_slice(&self.y.to_bytes());
189
190 result
191 }
192
193 /// Deserialize point from uncompressed byte format
194 ///
195 /// Supports the standard uncompressed format (0x04 || x || y) and
196 /// recognizes the all-zeros encoding for the identity element.
197 pub fn deserialize_uncompressed(bytes: &[u8]) -> Result<Self> {
198 validate::length("P-256 Point", bytes.len(), P256_POINT_UNCOMPRESSED_SIZE)?;
199
200 // Check for identity point (all zeros)
201 if bytes.iter().all(|&b| b == 0) {
202 return Ok(Self::identity());
203 }
204
205 // Validate uncompressed format indicator
206 if bytes[0] != 0x04 {
207 return Err(Error::param(
208 "P-256 Point",
209 "Invalid uncompressed point format (expected 0x04 prefix)",
210 ));
211 }
212
213 // Extract and validate coordinates
214 let mut x_bytes = [0u8; P256_FIELD_ELEMENT_SIZE];
215 let mut y_bytes = [0u8; P256_FIELD_ELEMENT_SIZE];
216
217 x_bytes.copy_from_slice(&bytes[1..33]);
218 y_bytes.copy_from_slice(&bytes[33..65]);
219
220 Self::new_uncompressed(&x_bytes, &y_bytes)
221 }
222
223 /// Serialize point to SEC 1 compressed format (0x02/0x03 || x)
224 ///
225 /// The compressed format uses:
226 /// - 0x02 prefix if y-coordinate is even
227 /// - 0x03 prefix if y-coordinate is odd
228 /// - Followed by the x-coordinate in big-endian format
229 ///
230 /// The identity point is encoded as 33 zero bytes for consistency
231 /// with the uncompressed format.
232 ///
233 /// This format reduces storage/transmission size by ~50% compared to
234 /// uncompressed points while maintaining full recoverability.
235 pub fn serialize_compressed(&self) -> [u8; P256_POINT_COMPRESSED_SIZE] {
236 let mut out = [0u8; P256_POINT_COMPRESSED_SIZE];
237
238 // Identity → all zeros
239 if self.is_identity() {
240 return out;
241 }
242
243 // Determine prefix based on y-coordinate parity
244 out[0] = if self.y.is_odd() { 0x03 } else { 0x02 };
245 out[1..].copy_from_slice(&self.x.to_bytes());
246 out
247 }
248
249 /// Deserialize SEC 1 compressed point
250 ///
251 /// Recovers the full point from compressed format by:
252 /// 1. Extracting the x-coordinate
253 /// 2. Computing y² = x³ - 3x + b
254 /// 3. Finding the square root of y²
255 /// 4. Selecting the root with correct parity based on the prefix
256 ///
257 /// # Errors
258 /// Returns an error if:
259 /// - The prefix is not 0x02 or 0x03
260 /// - The x-coordinate is not in the valid field range
261 /// - The x-coordinate corresponds to a non-residue (not on curve)
262 pub fn deserialize_compressed(bytes: &[u8]) -> Result<Self> {
263 validate::length(
264 "P-256 Compressed Point",
265 bytes.len(),
266 P256_POINT_COMPRESSED_SIZE,
267 )?;
268
269 // Identity encoding
270 if bytes.iter().all(|&b| b == 0) {
271 return Ok(Self::identity());
272 }
273
274 let tag = bytes[0];
275 if tag != 0x02 && tag != 0x03 {
276 return Err(Error::param(
277 "P-256 Point",
278 "Invalid compressed point prefix (expected 0x02 or 0x03)",
279 ));
280 }
281
282 // Extract x-coordinate
283 let mut x_bytes = [0u8; P256_FIELD_ELEMENT_SIZE];
284 x_bytes.copy_from_slice(&bytes[1..]);
285
286 let x_fe = FieldElement::from_bytes(&x_bytes).map_err(|_| {
287 Error::param(
288 "P-256 Point",
289 "Invalid compressed point: x-coordinate yields quadratic non-residue",
290 )
291 })?;
292
293 // Compute right-hand side: y² = x³ - 3x + b
294 let rhs = {
295 let x2 = x_fe.square();
296 let x3 = x2.mul(&x_fe);
297 let a = FieldElement(FieldElement::A_M3); // a = -3
298 let b = FieldElement::from_bytes(&NIST_P256.b).unwrap();
299 x3.add(&a.mul(&x_fe)).add(&b)
300 };
301
302 // Attempt to find square root
303 let y_fe = rhs.sqrt().ok_or_else(|| {
304 Error::param(
305 "P-256 Point",
306 "Invalid compressed point: x-coordinate yields quadratic non-residue",
307 )
308 })?;
309
310 // Select the correct root based on parity
311 let y_final = if (y_fe.is_odd() && tag == 0x03) || (!y_fe.is_odd() && tag == 0x02) {
312 y_fe
313 } else {
314 // Use the negative root (p - y)
315 FieldElement::get_modulus().sub(&y_fe)
316 };
317
318 Ok(Point {
319 is_identity: Choice::from(0),
320 x: x_fe,
321 y: y_final,
322 })
323 }
324
325 /// Elliptic curve point addition using the group law
326 ///
327 /// Implements the abelian group operation for P-256 points.
328 /// Converts to projective coordinates for efficient computation,
329 /// then converts back to affine form.
330 pub fn add(&self, other: &Self) -> Self {
331 let p1 = self.to_projective();
332 let p2 = other.to_projective();
333 let result = p1.add(&p2);
334 result.to_affine()
335 }
336
337 /// Elliptic curve point doubling: 2 * self
338 ///
339 /// Computes the sum of a point with itself, which has a more
340 /// efficient formula than general point addition.
341 pub fn double(&self) -> Self {
342 let p = self.to_projective();
343 let result = p.double();
344 result.to_affine()
345 }
346
347 /// Scalar multiplication: compute scalar * self
348 ///
349 /// Uses constant-time double-and-add algorithm.
350 pub fn mul(&self, scalar: &Scalar) -> Result<Self> {
351 if scalar.is_zero() {
352 return Ok(Self::identity());
353 }
354
355 let scalar_bytes = scalar.as_secret_buffer().as_ref();
356
357 // Work in Jacobian/projective coordinates throughout
358 let base = self.to_projective();
359 let mut result = ProjectivePoint::identity();
360
361 for byte in scalar_bytes.iter() {
362 for bit_pos in (0..8).rev() {
363 result = result.double();
364
365 let bit = (byte >> bit_pos) & 1;
366 let choice = Choice::from(bit);
367
368 // Always compute the addition
369 let result_added = result.add(&base);
370
371 // Constant-time select: if bit is 1, use added result, else keep result
372 result = ProjectivePoint::conditional_select(&result, &result_added, choice);
373 }
374 }
375
376 Ok(result.to_affine())
377 }
378
379 // Private helper methods
380
381 /// Validate that coordinates satisfy the P-256 curve equation
382 ///
383 /// Verifies: y² = x³ - 3x + b (mod p)
384 /// where b is the curve parameter from NIST P-256 specification.
385 ///
386 /// This is a critical security check to prevent invalid curve attacks.
387 fn is_on_curve(x: &FieldElement, y: &FieldElement) -> bool {
388 // Left-hand side: y²
389 let y_squared = y.square();
390
391 // Right-hand side: x³ - 3x + b
392 let x_cubed = x.square().mul(x);
393 let a_coeff = FieldElement(FieldElement::A_M3); // a = -3 mod p
394 let ax = a_coeff.mul(x);
395 let b_coeff = FieldElement::from_bytes(&NIST_P256.b).unwrap();
396
397 // Compute x³ - 3x + b
398 let x_cubed_plus_ax = x_cubed.add(&ax);
399 let rhs = x_cubed_plus_ax.add(&b_coeff);
400
401 y_squared == rhs
402 }
403
404 /// Convert affine point to Jacobian projective coordinates
405 ///
406 /// Affine (x, y) → Jacobian (X:Y:Z) where X=x, Y=y, Z=1
407 /// Identity point maps to (0:1:0) following standard conventions.
408 fn to_projective(&self) -> ProjectivePoint {
409 if self.is_identity() {
410 return ProjectivePoint {
411 is_identity: Choice::from(1),
412 x: FieldElement::zero(),
413 y: FieldElement::one(),
414 z: FieldElement::zero(),
415 };
416 }
417
418 ProjectivePoint {
419 is_identity: Choice::from(0),
420 x: self.x.clone(),
421 y: self.y.clone(),
422 z: FieldElement::one(),
423 }
424 }
425}
426
427impl ConditionallySelectable for ProjectivePoint {
428 fn conditional_select(a: &Self, b: &Self, choice: Choice) -> Self {
429 Self {
430 is_identity: Choice::conditional_select(&a.is_identity, &b.is_identity, choice),
431 x: FieldElement::conditional_select(&a.x, &b.x, choice),
432 y: FieldElement::conditional_select(&a.y, &b.y, choice),
433 z: FieldElement::conditional_select(&a.z, &b.z, choice),
434 }
435 }
436}
437
438impl ProjectivePoint {
439 /// Identity in Jacobian form: (0 : 1 : 0)
440 pub fn identity() -> Self {
441 ProjectivePoint {
442 is_identity: Choice::from(1),
443 x: FieldElement::zero(),
444 y: FieldElement::one(),
445 z: FieldElement::zero(),
446 }
447 }
448
449 /// Projective point addition using constant-time formulas
450 ///
451 /// Implements the addition law for Jacobian coordinates without branching.
452 /// Handles identity elements and P=Q (doubling) cases using conditional selection.
453 pub fn add(&self, other: &Self) -> Self {
454 // 1. Compute Generic Addition (assuming P != Q, neither is identity)
455 // Reference: "Guide to Elliptic Curve Cryptography" Algorithm 3.22
456 let z1_squared = self.z.square();
457 let z2_squared = other.z.square();
458 let z1_cubed = z1_squared.mul(&self.z);
459 let z2_cubed = z2_squared.mul(&other.z);
460
461 let u1 = self.x.mul(&z2_squared); // X1 · Z2²
462 let u2 = other.x.mul(&z1_squared); // X2 · Z1²
463 let s1 = self.y.mul(&z2_cubed); // Y1 · Z2³
464 let s2 = other.y.mul(&z1_cubed); // Y2 · Z1³
465
466 // Compute differences
467 let h = u2.sub(&u1); // X2·Z1² − X1·Z2²
468 let r = s2.sub(&s1); // Y2·Z1³ − Y1·Z2³
469
470 // Compute Generic Addition Result
471 // -----------------------------
472 let h_squared = h.square();
473 let h_cubed = h_squared.mul(&h);
474 let v = u1.mul(&h_squared);
475
476 // X3 = r² − h³ − 2·v
477 let r_squared = r.square();
478 let two_v = v.add(&v);
479 let mut x3 = r_squared.sub(&h_cubed);
480 x3 = x3.sub(&two_v);
481
482 // Y3 = r·(v − X3) − s1·h³
483 let v_minus_x3 = v.sub(&x3);
484 let r_times_diff = r.mul(&v_minus_x3);
485 let s1_times_h_cubed = s1.mul(&h_cubed);
486 let y3 = r_times_diff.sub(&s1_times_h_cubed);
487
488 // Z3 = Z1 · Z2 · h
489 let z1_times_z2 = self.z.mul(&other.z);
490 let z3 = z1_times_z2.mul(&h);
491
492 let generic_point = Self {
493 is_identity: Choice::from(0),
494 x: x3,
495 y: y3,
496 z: z3,
497 };
498
499 // 2. Compute Doubling (fallback for P==Q)
500 let double_point = self.double();
501
502 // 3. Select Result based on state
503 let h_is_zero = Choice::from((h.is_zero() as u8) & 1);
504 let r_is_zero = Choice::from((r.is_zero() as u8) & 1);
505
506 // Case: P == Q (h=0, r=0)
507 let p_eq_q = h_is_zero & r_is_zero;
508 // Case: P == -Q (h=0, r!=0)
509 let p_eq_neg_q = h_is_zero & !r_is_zero;
510
511 // Start with generic addition result
512 let mut result = generic_point;
513
514 // If P == Q, use doubling result
515 result = Self::conditional_select(&result, &double_point, p_eq_q);
516
517 // If P == -Q, use identity
518 result = Self::conditional_select(&result, &Self::identity(), p_eq_neg_q);
519
520 // Handle Identity Inputs (overrides math results)
521 // If self is identity, result is other. If other is identity, result is self.
522 result = Self::conditional_select(&result, other, self.is_identity);
523 result = Self::conditional_select(&result, self, other.is_identity);
524
525 result
526 }
527
528 /// Projective point doubling using constant-time formulas
529 ///
530 /// Jacobian doubling for short-Weierstrass curves with *a = –3*
531 /// (SEC 1, Algorithm 3.2.1 — Δ / Γ / β / α form)
532 /// Removed early returns to ensure constant execution time.
533 #[inline]
534 pub fn double(&self) -> Self {
535 // ── 1. Pre-computations ─────────────────────────────────
536 // Δ = Z₁²
537 let delta = self.z.square();
538
539 // Γ = Y₁²
540 let gamma = self.y.square();
541
542 // β = X₁·Γ
543 let beta = self.x.mul(&gamma);
544
545 // α = 3·(X₁ − Δ)·(X₁ + Δ) (valid because a = –3)
546 let x_plus_delta = self.x.add(&delta);
547 let x_minus_delta = self.x.sub(&delta);
548 let mut alpha = x_plus_delta.mul(&x_minus_delta);
549 alpha = alpha.add(&alpha).add(&alpha); // ×3
550
551 // ── 2. Output coordinates ──────────────────────────────
552 // X₃ = α² − 8·β
553 let mut eight_beta = beta.add(&beta); // 2β
554 eight_beta = eight_beta.add(&eight_beta); // 4β
555 eight_beta = eight_beta.add(&eight_beta); // 8β
556 let x3 = alpha.square().sub(&eight_beta);
557
558 // Z₃ = (Y₁ + Z₁)² − Γ − Δ
559 let y_plus_z = self.y.add(&self.z);
560 let z3 = y_plus_z.square().sub(&gamma).sub(&delta);
561
562 // Y₃ = α·(4·β − X₃) − 8·Γ²
563 let mut four_beta = beta.add(&beta); // 2β
564 four_beta = four_beta.add(&four_beta); // 4β
565 let mut y3 = four_beta.sub(&x3);
566 y3 = alpha.mul(&y3);
567
568 let gamma_sq = gamma.square(); // Γ²
569 let mut eight_gamma_sq = gamma_sq.add(&gamma_sq); // 2Γ²
570 eight_gamma_sq = eight_gamma_sq.add(&eight_gamma_sq); // 4Γ²
571 eight_gamma_sq = eight_gamma_sq.add(&eight_gamma_sq); // 8Γ²
572 y3 = y3.sub(&eight_gamma_sq);
573
574 let result = Self {
575 is_identity: Choice::from(0),
576 x: x3,
577 y: y3,
578 z: z3,
579 };
580
581 // Handle Identity Input via conditional selection
582 // If self is identity, return identity.
583 // Also handle (x, 0) case which results in identity (y == 0 check embedded in math via z3 calc?)
584 // Actually, if Y=0, doubling is identity. Our math produces Z3 = ... - gamma ...
585 // Let's explicitly handle the "result should be identity if input identity or Y=0" logic safely.
586
587 let is_y_zero = self.y.is_zero();
588 let return_identity = self.is_identity | Choice::from(is_y_zero as u8);
589
590 Self::conditional_select(&result, &Self::identity(), return_identity)
591 }
592
593 /// Convert Jacobian projective coordinates back to affine coordinates
594 ///
595 /// Performs the conversion (X:Y:Z) → (X/Z², Y/Z³) using field inversion.
596 /// This is the most expensive operation but only needed for final results.
597 pub fn to_affine(&self) -> Point {
598 if self.is_identity.into() {
599 return Point::identity();
600 }
601
602 // Compute the modular inverse of Z
603 let z_inv = self
604 .z
605 .invert()
606 .expect("Non-zero Z coordinate should be invertible");
607 let z_inv_squared = z_inv.square();
608 let z_inv_cubed = z_inv_squared.mul(&z_inv);
609
610 // Convert to affine coordinates: (x, y) = (X/Z², Y/Z³)
611 let x_affine = self.x.mul(&z_inv_squared);
612 let y_affine = self.y.mul(&z_inv_cubed);
613
614 Point {
615 is_identity: Choice::from(0),
616 x: x_affine,
617 y: y_affine,
618 }
619 }
620}