dcrypt_algorithms/ec/p256/
point.rs

1//! P-256 elliptic curve point operations
2
3use crate::ec::p256::{
4    constants::{
5        P256_FIELD_ELEMENT_SIZE, P256_POINT_COMPRESSED_SIZE, P256_POINT_UNCOMPRESSED_SIZE,
6    },
7    field::FieldElement,
8    scalar::Scalar,
9};
10use crate::error::{validate, Error, Result};
11use dcrypt_params::traditional::ecdsa::NIST_P256;
12use subtle::{Choice, ConditionallySelectable};
13
14/// Format of a serialized elliptic curve point
15#[derive(Debug, Clone, Copy, PartialEq, Eq)]
16pub enum PointFormat {
17    /// Identity point (all zeros)
18    Identity,
19    /// Uncompressed format: 0x04 || x || y
20    Uncompressed,
21    /// Compressed format: 0x02/0x03 || x
22    Compressed,
23}
24
25/// P-256 elliptic curve point in affine coordinates (x, y)
26///
27/// Represents points on the NIST P-256 curve. The special point at infinity
28/// (identity element) is represented with is_identity = true.
29#[derive(Clone, Debug)]
30pub struct Point {
31    /// Whether this point is the identity element (point at infinity)
32    pub(crate) is_identity: Choice,
33    /// X coordinate in affine representation
34    pub(crate) x: FieldElement,
35    /// Y coordinate in affine representation  
36    pub(crate) y: FieldElement,
37}
38
39/// P-256 point in Jacobian projective coordinates (X:Y:Z) for efficient arithmetic
40///
41/// Jacobian coordinates represent affine point (x,y) as (X:Y:Z) where:
42/// - x = X/Z²
43/// - y = Y/Z³  
44/// - Point at infinity has Z = 0
45///
46/// This representation allows for efficient point addition and doubling
47/// without expensive field inversions during intermediate calculations.
48#[derive(Clone, Copy, Debug)]
49pub(crate) struct ProjectivePoint {
50    /// Whether this point is the identity element (point at infinity)
51    is_identity: Choice,
52    /// X coordinate in Jacobian representation
53    x: FieldElement,
54    /// Y coordinate in Jacobian representation
55    y: FieldElement,
56    /// Z coordinate (projective factor)
57    z: FieldElement,
58}
59
60impl PartialEq for Point {
61    /// Constant-time equality comparison for elliptic curve points
62    ///
63    /// Handles the special case where either point is the identity element.
64    /// For regular points, compares both x and y coordinates.
65    fn eq(&self, other: &Self) -> bool {
66        // If either is identity, both must be identity to be equal
67        let self_is_identity: bool = self.is_identity.into();
68        let other_is_identity: bool = other.is_identity.into();
69
70        if self_is_identity || other_is_identity {
71            return self_is_identity == other_is_identity;
72        }
73
74        // Otherwise compare coordinates
75        self.x == other.x && self.y == other.y
76    }
77}
78
79impl Point {
80    /// Create a new elliptic curve point from uncompressed coordinates
81    ///
82    /// Validates that the given (x, y) coordinates satisfy the P-256 curve equation:
83    /// y² = x³ - 3x + b (mod p)
84    ///
85    /// Returns an error if the point is not on the curve.
86    pub fn new_uncompressed(
87        x: &[u8; P256_FIELD_ELEMENT_SIZE],
88        y: &[u8; P256_FIELD_ELEMENT_SIZE],
89    ) -> Result<Self> {
90        let x_fe = FieldElement::from_bytes(x)?;
91        let y_fe = FieldElement::from_bytes(y)?;
92
93        // Validate that the point lies on the curve
94        if !Self::is_on_curve(&x_fe, &y_fe) {
95            return Err(Error::param(
96                "P-256 Point",
97                "Point coordinates do not satisfy curve equation",
98            ));
99        }
100
101        Ok(Point {
102            is_identity: Choice::from(0),
103            x: x_fe,
104            y: y_fe,
105        })
106    }
107
108    /// Create the identity element (point at infinity)
109    ///
110    /// The identity element serves as the additive neutral element
111    /// for the elliptic curve group operation.
112    pub fn identity() -> Self {
113        Point {
114            is_identity: Choice::from(1),
115            x: FieldElement::zero(),
116            y: FieldElement::zero(),
117        }
118    }
119
120    /// Check if this point is the identity element
121    pub fn is_identity(&self) -> bool {
122        self.is_identity.into()
123    }
124
125    /// Get the x-coordinate as a byte array in big-endian format
126    pub fn x_coordinate_bytes(&self) -> [u8; P256_FIELD_ELEMENT_SIZE] {
127        self.x.to_bytes()
128    }
129
130    /// Get the y-coordinate as a byte array in big-endian format
131    pub fn y_coordinate_bytes(&self) -> [u8; P256_FIELD_ELEMENT_SIZE] {
132        self.y.to_bytes()
133    }
134
135    /// Detect point format from serialized bytes
136    ///
137    /// Analyzes the leading byte and length to determine the serialization format.
138    /// Useful for handling points that could be in either compressed or uncompressed form.
139    ///
140    /// # Returns
141    /// - `Ok(PointFormat)` indicating the detected format
142    /// - `Err` if the format is invalid or unrecognized
143    pub fn detect_format(bytes: &[u8]) -> Result<PointFormat> {
144        if bytes.is_empty() {
145            return Err(Error::param("P-256 Point", "Empty point data"));
146        }
147
148        match (bytes[0], bytes.len()) {
149            (0x00, P256_POINT_UNCOMPRESSED_SIZE) => {
150                // Check if all bytes are zero (identity encoding)
151                if bytes.iter().all(|&b| b == 0) {
152                    Ok(PointFormat::Identity)
153                } else {
154                    Err(Error::param(
155                        "P-256 Point",
156                        "Invalid identity point encoding",
157                    ))
158                }
159            }
160            (0x04, P256_POINT_UNCOMPRESSED_SIZE) => Ok(PointFormat::Uncompressed),
161            (0x02 | 0x03, P256_POINT_COMPRESSED_SIZE) => Ok(PointFormat::Compressed),
162            _ => Err(Error::param(
163                "P-256 Point",
164                "Unknown or malformed point format",
165            )),
166        }
167    }
168
169    /// Serialize point to uncompressed format: 0x04 || x || y
170    ///
171    /// The uncompressed point format is:
172    /// - 1 byte: 0x04 (uncompressed indicator)
173    /// - 32 bytes: x-coordinate (big-endian)
174    /// - 32 bytes: y-coordinate (big-endian)
175    ///
176    /// The identity point is represented as all zeros.
177    pub fn serialize_uncompressed(&self) -> [u8; P256_POINT_UNCOMPRESSED_SIZE] {
178        let mut result = [0u8; P256_POINT_UNCOMPRESSED_SIZE];
179
180        // Special encoding for the identity element
181        if self.is_identity() {
182            return result; // All zeros represents identity
183        }
184
185        // Standard uncompressed format: 0x04 || x || y
186        result[0] = 0x04;
187        result[1..33].copy_from_slice(&self.x.to_bytes());
188        result[33..65].copy_from_slice(&self.y.to_bytes());
189
190        result
191    }
192
193    /// Deserialize point from uncompressed byte format
194    ///
195    /// Supports the standard uncompressed format (0x04 || x || y) and
196    /// recognizes the all-zeros encoding for the identity element.
197    pub fn deserialize_uncompressed(bytes: &[u8]) -> Result<Self> {
198        validate::length("P-256 Point", bytes.len(), P256_POINT_UNCOMPRESSED_SIZE)?;
199
200        // Check for identity point (all zeros)
201        if bytes.iter().all(|&b| b == 0) {
202            return Ok(Self::identity());
203        }
204
205        // Validate uncompressed format indicator
206        if bytes[0] != 0x04 {
207            return Err(Error::param(
208                "P-256 Point",
209                "Invalid uncompressed point format (expected 0x04 prefix)",
210            ));
211        }
212
213        // Extract and validate coordinates
214        let mut x_bytes = [0u8; P256_FIELD_ELEMENT_SIZE];
215        let mut y_bytes = [0u8; P256_FIELD_ELEMENT_SIZE];
216
217        x_bytes.copy_from_slice(&bytes[1..33]);
218        y_bytes.copy_from_slice(&bytes[33..65]);
219
220        Self::new_uncompressed(&x_bytes, &y_bytes)
221    }
222
223    /// Serialize point to SEC 1 compressed format (0x02/0x03 || x)
224    ///
225    /// The compressed format uses:
226    /// - 0x02 prefix if y-coordinate is even
227    /// - 0x03 prefix if y-coordinate is odd
228    /// - Followed by the x-coordinate in big-endian format
229    ///
230    /// The identity point is encoded as 33 zero bytes for consistency
231    /// with the uncompressed format.
232    ///
233    /// This format reduces storage/transmission size by ~50% compared to
234    /// uncompressed points while maintaining full recoverability.
235    pub fn serialize_compressed(&self) -> [u8; P256_POINT_COMPRESSED_SIZE] {
236        let mut out = [0u8; P256_POINT_COMPRESSED_SIZE];
237
238        // Identity → all zeros
239        if self.is_identity() {
240            return out;
241        }
242
243        // Determine prefix based on y-coordinate parity
244        out[0] = if self.y.is_odd() { 0x03 } else { 0x02 };
245        out[1..].copy_from_slice(&self.x.to_bytes());
246        out
247    }
248
249    /// Deserialize SEC 1 compressed point
250    ///
251    /// Recovers the full point from compressed format by:
252    /// 1. Extracting the x-coordinate
253    /// 2. Computing y² = x³ - 3x + b
254    /// 3. Finding the square root of y²
255    /// 4. Selecting the root with correct parity based on the prefix
256    ///
257    /// # Errors
258    /// Returns an error if:
259    /// - The prefix is not 0x02 or 0x03
260    /// - The x-coordinate is not in the valid field range
261    /// - The x-coordinate corresponds to a non-residue (not on curve)
262    pub fn deserialize_compressed(bytes: &[u8]) -> Result<Self> {
263        validate::length(
264            "P-256 Compressed Point",
265            bytes.len(),
266            P256_POINT_COMPRESSED_SIZE,
267        )?;
268
269        // Identity encoding
270        if bytes.iter().all(|&b| b == 0) {
271            return Ok(Self::identity());
272        }
273
274        let tag = bytes[0];
275        if tag != 0x02 && tag != 0x03 {
276            return Err(Error::param(
277                "P-256 Point",
278                "Invalid compressed point prefix (expected 0x02 or 0x03)",
279            ));
280        }
281
282        // Extract x-coordinate
283        let mut x_bytes = [0u8; P256_FIELD_ELEMENT_SIZE];
284        x_bytes.copy_from_slice(&bytes[1..]);
285
286        let x_fe = FieldElement::from_bytes(&x_bytes).map_err(|_| {
287            Error::param(
288                "P-256 Point",
289                "Invalid compressed point: x-coordinate yields quadratic non-residue",
290            )
291        })?;
292
293        // Compute right-hand side: y² = x³ - 3x + b
294        let rhs = {
295            let x2 = x_fe.square();
296            let x3 = x2.mul(&x_fe);
297            let a = FieldElement(FieldElement::A_M3); // a = -3
298            let b = FieldElement::from_bytes(&NIST_P256.b).unwrap();
299            x3.add(&a.mul(&x_fe)).add(&b)
300        };
301
302        // Attempt to find square root
303        let y_fe = rhs.sqrt().ok_or_else(|| {
304            Error::param(
305                "P-256 Point",
306                "Invalid compressed point: x-coordinate yields quadratic non-residue",
307            )
308        })?;
309
310        // Select the correct root based on parity
311        let y_final = if (y_fe.is_odd() && tag == 0x03) || (!y_fe.is_odd() && tag == 0x02) {
312            y_fe
313        } else {
314            // Use the negative root (p - y)
315            FieldElement::get_modulus().sub(&y_fe)
316        };
317
318        Ok(Point {
319            is_identity: Choice::from(0),
320            x: x_fe,
321            y: y_final,
322        })
323    }
324
325    /// Elliptic curve point addition using the group law
326    ///
327    /// Implements the abelian group operation for P-256 points.
328    /// Converts to projective coordinates for efficient computation,
329    /// then converts back to affine form.
330    pub fn add(&self, other: &Self) -> Self {
331        let p1 = self.to_projective();
332        let p2 = other.to_projective();
333        let result = p1.add(&p2);
334        result.to_affine()
335    }
336
337    /// Elliptic curve point doubling: 2 * self
338    ///
339    /// Computes the sum of a point with itself, which has a more
340    /// efficient formula than general point addition.
341    pub fn double(&self) -> Self {
342        let p = self.to_projective();
343        let result = p.double();
344        result.to_affine()
345    }
346
347    /// Scalar multiplication: compute scalar * self
348    ///
349    /// Uses constant-time double-and-add algorithm.
350    pub fn mul(&self, scalar: &Scalar) -> Result<Self> {
351        if scalar.is_zero() {
352            return Ok(Self::identity());
353        }
354
355        let scalar_bytes = scalar.as_secret_buffer().as_ref();
356
357        // Work in Jacobian/projective coordinates throughout
358        let base = self.to_projective();
359        let mut result = ProjectivePoint::identity();
360
361        for byte in scalar_bytes.iter() {
362            for bit_pos in (0..8).rev() {
363                result = result.double();
364
365                let bit = (byte >> bit_pos) & 1;
366                let choice = Choice::from(bit);
367
368                // Always compute the addition
369                let result_added = result.add(&base);
370
371                // Constant-time select: if bit is 1, use added result, else keep result
372                result = ProjectivePoint::conditional_select(&result, &result_added, choice);
373            }
374        }
375
376        Ok(result.to_affine())
377    }
378
379    // Private helper methods
380
381    /// Validate that coordinates satisfy the P-256 curve equation
382    ///
383    /// Verifies: y² = x³ - 3x + b (mod p)
384    /// where b is the curve parameter from NIST P-256 specification.
385    ///
386    /// This is a critical security check to prevent invalid curve attacks.
387    fn is_on_curve(x: &FieldElement, y: &FieldElement) -> bool {
388        // Left-hand side: y²
389        let y_squared = y.square();
390
391        // Right-hand side: x³ - 3x + b
392        let x_cubed = x.square().mul(x);
393        let a_coeff = FieldElement(FieldElement::A_M3); // a = -3 mod p
394        let ax = a_coeff.mul(x);
395        let b_coeff = FieldElement::from_bytes(&NIST_P256.b).unwrap();
396
397        // Compute x³ - 3x + b
398        let x_cubed_plus_ax = x_cubed.add(&ax);
399        let rhs = x_cubed_plus_ax.add(&b_coeff);
400
401        y_squared == rhs
402    }
403
404    /// Convert affine point to Jacobian projective coordinates
405    ///
406    /// Affine (x, y) → Jacobian (X:Y:Z) where X=x, Y=y, Z=1
407    /// Identity point maps to (0:1:0) following standard conventions.
408    fn to_projective(&self) -> ProjectivePoint {
409        if self.is_identity() {
410            return ProjectivePoint {
411                is_identity: Choice::from(1),
412                x: FieldElement::zero(),
413                y: FieldElement::one(),
414                z: FieldElement::zero(),
415            };
416        }
417
418        ProjectivePoint {
419            is_identity: Choice::from(0),
420            x: self.x.clone(),
421            y: self.y.clone(),
422            z: FieldElement::one(),
423        }
424    }
425}
426
427impl ConditionallySelectable for ProjectivePoint {
428    fn conditional_select(a: &Self, b: &Self, choice: Choice) -> Self {
429        Self {
430            is_identity: Choice::conditional_select(&a.is_identity, &b.is_identity, choice),
431            x: FieldElement::conditional_select(&a.x, &b.x, choice),
432            y: FieldElement::conditional_select(&a.y, &b.y, choice),
433            z: FieldElement::conditional_select(&a.z, &b.z, choice),
434        }
435    }
436}
437
438impl ProjectivePoint {
439    /// Identity in Jacobian form: (0 : 1 : 0)
440    pub fn identity() -> Self {
441        ProjectivePoint {
442            is_identity: Choice::from(1),
443            x: FieldElement::zero(),
444            y: FieldElement::one(),
445            z: FieldElement::zero(),
446        }
447    }
448
449    /// Projective point addition using constant-time formulas
450    ///
451    /// Implements the addition law for Jacobian coordinates without branching.
452    /// Handles identity elements and P=Q (doubling) cases using conditional selection.
453    pub fn add(&self, other: &Self) -> Self {
454        // 1. Compute Generic Addition (assuming P != Q, neither is identity)
455        // Reference: "Guide to Elliptic Curve Cryptography" Algorithm 3.22
456        let z1_squared = self.z.square();
457        let z2_squared = other.z.square();
458        let z1_cubed = z1_squared.mul(&self.z);
459        let z2_cubed = z2_squared.mul(&other.z);
460
461        let u1 = self.x.mul(&z2_squared); // X1 · Z2²
462        let u2 = other.x.mul(&z1_squared); // X2 · Z1²
463        let s1 = self.y.mul(&z2_cubed); // Y1 · Z2³
464        let s2 = other.y.mul(&z1_cubed); // Y2 · Z1³
465
466        // Compute differences
467        let h = u2.sub(&u1); // X2·Z1² − X1·Z2²
468        let r = s2.sub(&s1); // Y2·Z1³ − Y1·Z2³
469
470        // Compute Generic Addition Result
471        // -----------------------------
472        let h_squared = h.square();
473        let h_cubed = h_squared.mul(&h);
474        let v = u1.mul(&h_squared);
475
476        // X3 = r² − h³ − 2·v
477        let r_squared = r.square();
478        let two_v = v.add(&v);
479        let mut x3 = r_squared.sub(&h_cubed);
480        x3 = x3.sub(&two_v);
481
482        // Y3 = r·(v − X3) − s1·h³
483        let v_minus_x3 = v.sub(&x3);
484        let r_times_diff = r.mul(&v_minus_x3);
485        let s1_times_h_cubed = s1.mul(&h_cubed);
486        let y3 = r_times_diff.sub(&s1_times_h_cubed);
487
488        // Z3 = Z1 · Z2 · h
489        let z1_times_z2 = self.z.mul(&other.z);
490        let z3 = z1_times_z2.mul(&h);
491
492        let generic_point = Self {
493            is_identity: Choice::from(0),
494            x: x3,
495            y: y3,
496            z: z3,
497        };
498
499        // 2. Compute Doubling (fallback for P==Q)
500        let double_point = self.double();
501
502        // 3. Select Result based on state
503        let h_is_zero = Choice::from((h.is_zero() as u8) & 1);
504        let r_is_zero = Choice::from((r.is_zero() as u8) & 1);
505        
506        // Case: P == Q (h=0, r=0)
507        let p_eq_q = h_is_zero & r_is_zero;
508        // Case: P == -Q (h=0, r!=0)
509        let p_eq_neg_q = h_is_zero & !r_is_zero;
510
511        // Start with generic addition result
512        let mut result = generic_point;
513
514        // If P == Q, use doubling result
515        result = Self::conditional_select(&result, &double_point, p_eq_q);
516
517        // If P == -Q, use identity
518        result = Self::conditional_select(&result, &Self::identity(), p_eq_neg_q);
519
520        // Handle Identity Inputs (overrides math results)
521        // If self is identity, result is other. If other is identity, result is self.
522        result = Self::conditional_select(&result, other, self.is_identity);
523        result = Self::conditional_select(&result, self, other.is_identity);
524
525        result
526    }
527
528    /// Projective point doubling using constant-time formulas
529    ///
530    /// Jacobian doubling for short-Weierstrass curves with *a = –3*
531    /// (SEC 1, Algorithm 3.2.1  —  Δ / Γ / β / α form)
532    /// Removed early returns to ensure constant execution time.
533    #[inline]
534    pub fn double(&self) -> Self {
535        // ── 1. Pre-computations ─────────────────────────────────
536        // Δ = Z₁²
537        let delta = self.z.square();
538
539        // Γ = Y₁²
540        let gamma = self.y.square();
541
542        // β = X₁·Γ
543        let beta = self.x.mul(&gamma);
544
545        // α = 3·(X₁ − Δ)·(X₁ + Δ)       (valid because a = –3)
546        let x_plus_delta = self.x.add(&delta);
547        let x_minus_delta = self.x.sub(&delta);
548        let mut alpha = x_plus_delta.mul(&x_minus_delta);
549        alpha = alpha.add(&alpha).add(&alpha); // ×3
550
551        // ── 2. Output coordinates ──────────────────────────────
552        // X₃ = α² − 8·β
553        let mut eight_beta = beta.add(&beta); // 2β
554        eight_beta = eight_beta.add(&eight_beta); // 4β
555        eight_beta = eight_beta.add(&eight_beta); // 8β
556        let x3 = alpha.square().sub(&eight_beta);
557
558        // Z₃ = (Y₁ + Z₁)² − Γ − Δ
559        let y_plus_z = self.y.add(&self.z);
560        let z3 = y_plus_z.square().sub(&gamma).sub(&delta);
561
562        // Y₃ = α·(4·β − X₃) − 8·Γ²
563        let mut four_beta = beta.add(&beta); // 2β
564        four_beta = four_beta.add(&four_beta); // 4β
565        let mut y3 = four_beta.sub(&x3);
566        y3 = alpha.mul(&y3);
567
568        let gamma_sq = gamma.square(); // Γ²
569        let mut eight_gamma_sq = gamma_sq.add(&gamma_sq); // 2Γ²
570        eight_gamma_sq = eight_gamma_sq.add(&eight_gamma_sq); // 4Γ²
571        eight_gamma_sq = eight_gamma_sq.add(&eight_gamma_sq); // 8Γ²
572        y3 = y3.sub(&eight_gamma_sq);
573
574        let result = Self {
575            is_identity: Choice::from(0),
576            x: x3,
577            y: y3,
578            z: z3,
579        };
580
581        // Handle Identity Input via conditional selection
582        // If self is identity, return identity.
583        // Also handle (x, 0) case which results in identity (y == 0 check embedded in math via z3 calc?)
584        // Actually, if Y=0, doubling is identity. Our math produces Z3 = ... - gamma ...
585        // Let's explicitly handle the "result should be identity if input identity or Y=0" logic safely.
586        
587        let is_y_zero = self.y.is_zero();
588        let return_identity = self.is_identity | Choice::from(is_y_zero as u8);
589
590        Self::conditional_select(&result, &Self::identity(), return_identity)
591    }
592
593    /// Convert Jacobian projective coordinates back to affine coordinates
594    ///
595    /// Performs the conversion (X:Y:Z) → (X/Z², Y/Z³) using field inversion.
596    /// This is the most expensive operation but only needed for final results.
597    pub fn to_affine(&self) -> Point {
598        if self.is_identity.into() {
599            return Point::identity();
600        }
601
602        // Compute the modular inverse of Z
603        let z_inv = self
604            .z
605            .invert()
606            .expect("Non-zero Z coordinate should be invertible");
607        let z_inv_squared = z_inv.square();
608        let z_inv_cubed = z_inv_squared.mul(&z_inv);
609
610        // Convert to affine coordinates: (x, y) = (X/Z², Y/Z³)
611        let x_affine = self.x.mul(&z_inv_squared);
612        let y_affine = self.y.mul(&z_inv_cubed);
613
614        Point {
615            is_identity: Choice::from(0),
616            x: x_affine,
617            y: y_affine,
618        }
619    }
620}