1use super::field::fp::Fp;
10use super::field::fp2::Fp2;
11use super::{G1Projective, G2Projective};
12use crate::error::{Error, Result};
13use crate::hash::sha2::Sha256;
14use crate::hash::HashFunction;
15use subtle::{Choice, ConditionallySelectable, ConstantTimeEq};
16
17fn expand_message_xmd(msg: &[u8], dst: &[u8], len_in_bytes: usize) -> Result<Vec<u8>> {
22 const B_IN_BYTES: usize = 32;
23 let ell = (len_in_bytes + B_IN_BYTES - 1) / B_IN_BYTES;
24 if ell > 255 {
25 return Err(Error::Parameter {
26 name: "len_in_bytes".into(),
27 reason: "requested output too long for expand_message_xmd".into(),
28 });
29 }
30 let mut dst_prime = Vec::with_capacity(dst.len() + 1);
31 dst_prime.extend_from_slice(dst);
32 dst_prime.push(dst.len() as u8);
33
34 let mut hasher = Sha256::new();
36 hasher.update(&[0u8; 64])?; hasher.update(msg)?;
38 hasher.update(&(len_in_bytes as u16).to_be_bytes())?;
39 hasher.update(&[0u8])?;
40 hasher.update(&dst_prime)?;
41 let b_0 = hasher.finalize()?;
42
43 let mut b_i = vec![0u8; B_IN_BYTES];
44 let mut uniform_bytes = Vec::with_capacity(len_in_bytes);
45
46 let mut hasher = Sha256::new();
48 hasher.update(b_0.as_ref())?;
49 hasher.update(&[1u8])?;
50 hasher.update(&dst_prime)?;
51 let digest = hasher.finalize()?;
52 b_i.copy_from_slice(digest.as_ref());
53 uniform_bytes.extend_from_slice(&b_i);
54
55 for i in 2..=ell {
56 let mut xor_input = [0u8; B_IN_BYTES];
57 for j in 0..B_IN_BYTES {
58 xor_input[j] = b_0.as_ref()[j] ^ b_i[j];
59 }
60 let mut hasher = Sha256::new();
61 hasher.update(&xor_input)?;
62 hasher.update(&[i as u8])?;
63 hasher.update(&dst_prime)?;
64 let digest = hasher.finalize()?;
65 b_i.copy_from_slice(digest.as_ref());
66 uniform_bytes.extend_from_slice(&b_i);
67 }
68
69 uniform_bytes.truncate(len_in_bytes);
70 Ok(uniform_bytes)
71}
72
73fn sgn0_fp(x: &Fp) -> Choice {
78 let bytes = x.to_bytes();
80 Choice::from(bytes[47] & 1)
82}
83
84fn sgn0_fp2(x: &Fp2) -> Choice {
85 let sign_0 = sgn0_fp(&x.c0);
87 let zero_0 = x.c0.is_zero();
88 let sign_1 = sgn0_fp(&x.c1);
89 sign_0 | (zero_0 & sign_1)
90}
91
92fn map_to_curve_g1(u: &Fp) -> G1Projective {
97 let z = Fp::from_raw_unchecked([
99 0x3c20_8c16_d87c_f1ff,
100 0x9781_6a91_6871_ca8d,
101 0xb850_45b7_179e_9a4d,
102 0x9d71_20b8_351c_4374,
103 0x1993_4a11_123d_9479,
104 0x1987_2869_eb4b_31b8,
105 ]);
106
107 let tv1 = u.square();
108 let tv3 = z * tv1;
109 let tv2 = tv3.square();
110 let mut x = tv2 + tv3;
111 let x3 = z * x;
112 x = x + Fp::one();
113 let mut gx = x.square() * x;
114
115 let b_coeff = Fp::from_raw_unchecked([
117 0xaa27_0000_000c_fff3,
118 0x53cc_0032_fc34_000a,
119 0x478f_e97a_6b0a_807f,
120 0xb1d3_7ebe_e6ba_24d7,
121 0x8ec9_733b_bf78_ab2f,
122 0x09d6_4551_3d83_de7e,
123 ]);
124
125 gx = gx + b_coeff;
126
127 let y = gx.sqrt();
128 let is_gx_square = y.is_some();
129 let y = y.unwrap_or(Fp::zero());
130
131 let x2 = x3;
132 let gx2 = (x2.square() * x2) + b_coeff;
133 let y2 = gx2.sqrt().unwrap_or(Fp::zero());
134
135 let x = Fp::conditional_select(&x2, &x, is_gx_square);
136 let y = Fp::conditional_select(&y2, &y, is_gx_square);
137
138 let flip = !sgn0_fp(u).ct_eq(&sgn0_fp(&y));
140 let y = Fp::conditional_select(&y, &-y, flip);
141
142 G1Projective { x, y, z: Fp::one() }
143}
144
145pub fn hash_to_curve_g1(msg: &[u8], dst: &[u8]) -> Result<G1Projective> {
147 let uniform_bytes = expand_message_xmd(msg, dst, 64)?;
148 let mut u0_bytes = [0u8; 64];
149 u0_bytes.copy_from_slice(&uniform_bytes[0..64]);
150 let u0 = Fp::from_bytes_wide(&u0_bytes);
151 let q = map_to_curve_g1(&u0);
152 Ok(q.clear_cofactor())
153}
154
155const ISO3_XNUM: [Fp2; 4] = [
161 Fp2 {
162 c0: Fp::from_raw_unchecked([
163 0x47f6_71c7_1ce0_5e62, 0x06dd_5707_1206_393e, 0x7c80_cd2a_f3fd_71a2, 0x0481_03ea_9e6c_d062, 0xc545_16ac_c8d0_37f6, 0x1380_8f55_0920_ea41,
164 ]),
165 c1: Fp::from_raw_unchecked([
166 0x47f6_71c7_1ce0_5e62, 0x06dd_5707_1206_393e, 0x7c80_cd2a_f3fd_71a2, 0x0481_03ea_9e6c_d062, 0xc545_16ac_c8d0_37f6, 0x1380_8f55_0920_ea41,
167 ]),
168 },
169 Fp2 {
170 c0: Fp::zero(),
171 c1: Fp::from_raw_unchecked([
172 0x5fe5_5555_554c_71d0, 0x873f_ffdd_236a_aaa3, 0x6a6b_4619_b26e_f918, 0x21c2_8884_0887_4945, 0x2836_cda7_028c_abc5, 0x0ac7_3310_a7fd_5abd,
173 ]),
174 },
175 Fp2 {
176 c0: Fp::from_raw_unchecked([
177 0x0a0c_5555_5559_71c3, 0xdb0c_0010_1f9e_aaae, 0xb1fb_2f94_1d79_7997, 0xd396_0742_ef41_6e1c, 0xb700_40e2_c205_56f4, 0x149d_7861_e581_393b,
178 ]),
179 c1: Fp::from_raw_unchecked([
180 0xaff2_aaaa_aaa6_38e8, 0x439f_ffee_91b5_5551, 0xb535_a30c_d937_7c8c, 0x90e1_4442_0443_a4a2, 0x941b_66d3_8146_55e2, 0x0563_9988_53fe_ad5e,
181 ]),
182 },
183 Fp2 {
184 c0: Fp::from_raw_unchecked([
185 0x40aa_c71c_71c7_25ed, 0x1909_5555_7a84_e38e, 0xd817_050a_8f41_abc3, 0xd864_85d4_c87f_6fb1, 0x696e_b479_f885_d059, 0x198e_1a74_3280_02d2,
186 ]),
187 c1: Fp::zero(),
188 },
189];
190
191const ISO3_XDEN: [Fp2; 3] = [
193 Fp2 {
194 c0: Fp::zero(),
195 c1: Fp::from_raw_unchecked([
196 0x1f3a_ffff_ff13_ab97, 0xf25b_fc61_1da3_ff3e, 0xca37_57cb_3819_b208, 0x3e64_2736_6f8c_ec18, 0x0397_7bc8_6095_b089, 0x04f6_9db1_3f39_a952,
197 ]),
198 },
199 Fp2 {
200 c0: Fp::from_raw_unchecked([
201 0x4476_0000_0027_552e, 0xdcb8_009a_4348_0020, 0x6f7e_e9ce_4a6e_8b59, 0xb103_30b7_c0a9_5bc6, 0x6140_b1fc_fb1e_54b7, 0x0381_be09_7f0b_b4e1,
202 ]),
203 c1: Fp::from_raw_unchecked([
204 0x7588_ffff_ffd8_557d, 0x41f3_ff64_6e0b_ffdf, 0xf7b1_e8d2_ac42_6aca, 0xb374_1acd_32db_b6f8, 0xe9da_f5b9_482d_581f, 0x167f_53e0_ba74_31b8,
205 ]),
206 },
207 Fp2::one(),
208];
209
210const ISO3_YNUM: [Fp2; 4] = [
212 Fp2 {
213 c0: Fp::from_raw_unchecked([
214 0x96d8_f684_bdfc_77be, 0xb530_e4f4_3b66_d0e2, 0x184a_88ff_3796_52fd, 0x57cb_23ec_fae8_04e1, 0x0fd2_e39e_ada3_eba9, 0x08c8_055e_31c5_d5c3,
215 ]),
216 c1: Fp::from_raw_unchecked([
217 0x96d8_f684_bdfc_77be, 0xb530_e4f4_3b66_d0e2, 0x184a_88ff_3796_52fd, 0x57cb_23ec_fae8_04e1, 0x0fd2_e39e_ada3_eba9, 0x08c8_055e_31c5_d5c3,
218 ]),
219 },
220 Fp2 {
221 c0: Fp::zero(),
222 c1: Fp::from_raw_unchecked([
223 0xbf0a_71c7_1c91_b406, 0x4d6d_55d2_8b76_38fd, 0x9d82_f98e_5f20_5aee, 0xa27a_a27b_1d1a_18d5, 0x02c3_b2b2_d293_8e86, 0x0c7d_1342_0b09_807f,
224 ]),
225 },
226 Fp2 {
227 c0: Fp::from_raw_unchecked([
228 0xd7f9_5555_5553_1c74, 0x21cf_fff7_48da_aaa8, 0x5a9a_d186_6c9b_be46, 0x4870_a221_0221_d251, 0x4a0d_b369_c0a3_2af1, 0x02b1_ccc4_29ff_56af,
229 ]),
230 c1: Fp::from_raw_unchecked([
231 0xe205_aaaa_aaac_8e37, 0xfcdc_0007_6879_5556, 0x0c96_011a_8a15_37dd, 0x1c06_a963_f163_406e, 0x010d_f44c_82a8_81e6, 0x174f_4526_0f80_8feb,
232 ]),
233 },
234 Fp2 {
235 c0: Fp::from_raw_unchecked([
236 0xa470_bda1_2f67_f35c, 0xc0fe_38e2_3327_b425, 0xc9d3_d0f2_c6f0_678d, 0x1c55_c993_5b5a_982e, 0x27f6_c0e2_f074_6764, 0x117c_5e6e_28aa_9054,
237 ]),
238 c1: Fp::zero(),
239 },
240];
241
242const ISO3_YDEN: [Fp2; 4] = [
244 Fp2 {
245 c0: Fp::from_raw_unchecked([
246 0x0162_ffff_fa76_5adf, 0x8f7b_ea48_0083_fb75, 0x561b_3c22_59e9_3611, 0x11e1_9fc1_a9c8_75d5, 0xca71_3efc_0036_7660, 0x03c6_a03d_41da_1151,
247 ]),
248 c1: Fp::from_raw_unchecked([
249 0x0162_ffff_fa76_5adf, 0x8f7b_ea48_0083_fb75, 0x561b_3c22_59e9_3611, 0x11e1_9fc1_a9c8_75d5, 0xca71_3efc_0036_7660, 0x03c6_a03d_41da_1151,
250 ]),
251 },
252 Fp2 {
253 c0: Fp::zero(),
254 c1: Fp::from_raw_unchecked([
255 0x5db0_ffff_fd3b_02c5, 0xd713_f523_58eb_fdba, 0x5ea6_0761_a84d_161a, 0xbb2c_75a3_4ea6_c44a, 0x0ac6_7359_21c1_119b, 0x0ee3_d913_bdac_fbf6,
256 ]),
257 },
258 Fp2 {
259 c0: Fp::from_raw_unchecked([
260 0x66b1_0000_003a_ffc5, 0xcb14_00e7_64ec_0030, 0xa73e_5eb5_6fa5_d106, 0x8984_c913_a0fe_09a9, 0x11e1_0afb_78ad_7f13, 0x0542_9d0e_3e91_8f52,
261 ]),
262 c1: Fp::from_raw_unchecked([
263 0x534d_ffff_ffc4_aae6, 0x5397_ff17_4c67_ffcf, 0xbff2_73eb_870b_251d, 0xdaf2_8271_5287_0915, 0x393a_9cba_ca9e_2dc3, 0x14be_74db_faee_5748,
264 ]),
265 },
266 Fp2::one(),
267];
268
269const SSWU_ELLP_A: Fp2 = Fp2 {
270 c0: Fp::zero(),
271 c1: Fp::from_raw_unchecked([
272 0xe53a_0000_0313_5242, 0x0108_0c0f_def8_0285, 0xe788_9edb_e340_f6bd, 0x0b51_3751_2631_0601, 0x02d6_9857_17c7_44ab, 0x1220_b4e9_79ea_5467,
273 ]),
274};
275
276const SSWU_ELLP_B: Fp2 = Fp2 {
277 c0: Fp::from_raw_unchecked([
278 0x22ea_0000_0cf8_9db2, 0x6ec8_32df_7138_0aa4, 0x6e1b_9440_3db5_a66e, 0x75bf_3c53_a794_73ba, 0x3dd3_a569_412c_0a34, 0x125c_db5e_74dc_4fd1,
279 ]),
280 c1: Fp::from_raw_unchecked([
281 0x22ea_0000_0cf8_9db2, 0x6ec8_32df_7138_0aa4, 0x6e1b_9440_3db5_a66e, 0x75bf_3c53_a794_73ba, 0x3dd3_a569_412c_0a34, 0x125c_db5e_74dc_4fd1,
282 ]),
283};
284
285const SSWU_XI: Fp2 = Fp2 {
286 c0: Fp::from_raw_unchecked([
287 0x87eb_ffff_fff9_555c, 0x656f_ffe5_da8f_fffa, 0x0fd0_7493_45d3_3ad2, 0xd951_e663_0665_76f4, 0xde29_1a3d_41e9_80d3, 0x0815_664c_7dfe_040d,
288 ]),
289 c1: Fp::from_raw_unchecked([
290 0x43f5_ffff_fffc_aaae, 0x32b7_fff2_ed47_fffd, 0x07e8_3a49_a2e9_9d69, 0xeca8_f331_8332_bb7a, 0xef14_8d1e_a0f4_c069, 0x040a_b326_3eff_0206,
291 ]),
292};
293
294fn iso_map(u: &G2Projective) -> G2Projective {
295 const COEFFS: [&[Fp2]; 4] = [&ISO3_XNUM, &ISO3_XDEN, &ISO3_YNUM, &ISO3_YDEN];
296
297 let G2Projective { x, y, z } = *u;
298 let mut mapvals = [Fp2::zero(); 4];
299
300 let zsq = z.square();
302 let zpows = [z, zsq, zsq * z];
303
304 for idx in 0..4 {
306 let coeff = COEFFS[idx];
307 let clast = coeff.len() - 1;
308 mapvals[idx] = coeff[clast];
309 for jdx in 0..clast {
310 mapvals[idx] = mapvals[idx] * x + zpows[jdx] * coeff[clast - 1 - jdx];
311 }
312 }
313
314 mapvals[1] *= z;
316
317 mapvals[2] *= y;
319 mapvals[3] *= z;
320
321 G2Projective {
322 x: mapvals[0] * mapvals[3], y: mapvals[2] * mapvals[1], z: mapvals[1] * mapvals[3], }
326}
327
328fn map_to_curve_simple_swu(u: &Fp2) -> G2Projective {
329 let usq = u.square();
330 let xi_usq = SSWU_XI * usq;
331 let xisq_u4 = xi_usq.square();
332 let nd_common = xisq_u4 + xi_usq; let x_den = SSWU_ELLP_A * Fp2::conditional_select(&(-nd_common), &SSWU_XI, nd_common.is_zero());
334 let x0_num = SSWU_ELLP_B * (Fp2::one() + nd_common); let x_densq = x_den.square();
338 let gx_den = x_densq * x_den;
339 let gx0_num = (x0_num.square() + SSWU_ELLP_A * x_densq) * x0_num + SSWU_ELLP_B * gx_den;
341
342 let gx0_div_den = gx0_num * gx_den.invert().unwrap_or(Fp2::zero());
346 let sqrt_candidate = gx0_div_den.sqrt();
347 let is_square = sqrt_candidate.is_some();
348
349 let x0_num_xi_usq = x0_num * xi_usq;
353 let x_num = Fp2::conditional_select(&x0_num_xi_usq, &x0_num, is_square);
354
355 let mut y = Fp2::zero();
361 if bool::from(is_square) {
362 y = sqrt_candidate.unwrap();
363 } else {
364 let gx1 = gx0_div_den * xi_usq.square() * xi_usq;
368 y = gx1.sqrt().unwrap_or(Fp2::zero());
369 }
370
371 let flip = !sgn0_fp2(u).ct_eq(&sgn0_fp2(&y));
373 let y = Fp2::conditional_select(&y, &-y, flip);
374
375 G2Projective {
376 x: x_num,
377 y: y * x_den,
378 z: x_den,
379 }
380}
381
382pub fn hash_to_curve_g2(msg: &[u8], dst: &[u8]) -> Result<G2Projective> {
384 let uniform_bytes = expand_message_xmd(msg, dst, 256)?;
385 let mut u0_bytes = [0u8; 128];
386 let mut u1_bytes = [0u8; 128];
387 u0_bytes.copy_from_slice(&uniform_bytes[0..128]);
388 u1_bytes.copy_from_slice(&uniform_bytes[128..256]);
389 let u0 = Fp2::from_bytes_wide(&u0_bytes);
390 let u1 = Fp2::from_bytes_wide(&u1_bytes);
391
392 let p0 = map_to_curve_simple_swu(&u0);
393 let q0 = iso_map(&p0);
394
395 let p1 = map_to_curve_simple_swu(&u1);
396 let q1 = iso_map(&p1);
397
398 let r = q0 + q1;
399 Ok(r.clear_cofactor())
400}