dcrypt_algorithms/ec/p384/
point.rs

1//! P-384 elliptic curve point operations
2
3use crate::ec::p384::{
4    constants::{
5        P384_FIELD_ELEMENT_SIZE, P384_POINT_COMPRESSED_SIZE, P384_POINT_UNCOMPRESSED_SIZE,
6    },
7    field::FieldElement,
8    scalar::Scalar,
9};
10use crate::error::{validate, Error, Result};
11use dcrypt_params::traditional::ecdsa::NIST_P384;
12use subtle::Choice;
13
14/// Format of a serialized elliptic curve point
15#[derive(Debug, Clone, Copy, PartialEq, Eq)]
16pub enum PointFormat {
17    /// Identity point (all zeros)
18    Identity,
19    /// Uncompressed format: 0x04 || x || y
20    Uncompressed,
21    /// Compressed format: 0x02/0x03 || x
22    Compressed,
23}
24
25/// P-384 elliptic curve point in affine coordinates (x, y)
26///
27/// Represents points on the NIST P-384 curve. The special point at infinity
28/// (identity element) is represented with is_identity = true.
29#[derive(Clone, Debug)]
30pub struct Point {
31    /// Whether this point is the identity element (point at infinity)
32    pub(crate) is_identity: Choice,
33    /// X coordinate in affine representation
34    pub(crate) x: FieldElement,
35    /// Y coordinate in affine representation  
36    pub(crate) y: FieldElement,
37}
38
39/// P-384 point in Jacobian projective coordinates (X:Y:Z) for efficient arithmetic
40///
41/// Jacobian coordinates represent affine point (x,y) as (X:Y:Z) where:
42/// - x = X/Z²
43/// - y = Y/Z³  
44/// - Point at infinity has Z = 0
45///
46/// This representation allows for efficient point addition and doubling
47/// without expensive field inversions during intermediate calculations.
48#[derive(Clone, Debug)]
49pub(crate) struct ProjectivePoint {
50    /// Whether this point is the identity element (point at infinity)
51    is_identity: Choice,
52    /// X coordinate in Jacobian representation
53    x: FieldElement,
54    /// Y coordinate in Jacobian representation
55    y: FieldElement,
56    /// Z coordinate (projective factor)
57    z: FieldElement,
58}
59
60impl PartialEq for Point {
61    /// Constant-time equality comparison for elliptic curve points
62    ///
63    /// Handles the special case where either point is the identity element.
64    /// For regular points, compares both x and y coordinates.
65    fn eq(&self, other: &Self) -> bool {
66        // If either is identity, both must be identity to be equal
67        let self_is_identity: bool = self.is_identity.into();
68        let other_is_identity: bool = other.is_identity.into();
69
70        if self_is_identity || other_is_identity {
71            return self_is_identity == other_is_identity;
72        }
73
74        // Otherwise compare coordinates
75        self.x == other.x && self.y == other.y
76    }
77}
78
79impl Point {
80    /// Create a new elliptic curve point from uncompressed coordinates
81    ///
82    /// Validates that the given (x, y) coordinates satisfy the P-384 curve equation:
83    /// y² = x³ - 3x + b (mod p)
84    ///
85    /// Returns an error if the point is not on the curve.
86    pub fn new_uncompressed(
87        x: &[u8; P384_FIELD_ELEMENT_SIZE],
88        y: &[u8; P384_FIELD_ELEMENT_SIZE],
89    ) -> Result<Self> {
90        let x_fe = FieldElement::from_bytes(x)?;
91        let y_fe = FieldElement::from_bytes(y)?;
92
93        // Validate that the point lies on the curve
94        if !Self::is_on_curve(&x_fe, &y_fe) {
95            return Err(Error::param(
96                "P-384 Point",
97                "Point coordinates do not satisfy curve equation",
98            ));
99        }
100
101        Ok(Point {
102            is_identity: Choice::from(0),
103            x: x_fe,
104            y: y_fe,
105        })
106    }
107
108    /// Create the identity element (point at infinity)
109    ///
110    /// The identity element serves as the additive neutral element
111    /// for the elliptic curve group operation.
112    pub fn identity() -> Self {
113        Point {
114            is_identity: Choice::from(1),
115            x: FieldElement::zero(),
116            y: FieldElement::zero(),
117        }
118    }
119
120    /// Check if this point is the identity element
121    pub fn is_identity(&self) -> bool {
122        self.is_identity.into()
123    }
124
125    /// Get the x-coordinate as a byte array in big-endian format
126    pub fn x_coordinate_bytes(&self) -> [u8; P384_FIELD_ELEMENT_SIZE] {
127        self.x.to_bytes()
128    }
129
130    /// Get the y-coordinate as a byte array in big-endian format
131    pub fn y_coordinate_bytes(&self) -> [u8; P384_FIELD_ELEMENT_SIZE] {
132        self.y.to_bytes()
133    }
134
135    /// Detect point format from serialized bytes
136    ///
137    /// Analyzes the leading byte and length to determine the serialization format.
138    /// Useful for handling points that could be in either compressed or uncompressed form.
139    ///
140    /// # Returns
141    /// - `Ok(PointFormat)` indicating the detected format
142    /// - `Err` if the format is invalid or unrecognized
143    pub fn detect_format(bytes: &[u8]) -> Result<PointFormat> {
144        if bytes.is_empty() {
145            return Err(Error::param("P-384 Point", "Empty point data"));
146        }
147
148        match (bytes[0], bytes.len()) {
149            (0x00, P384_POINT_UNCOMPRESSED_SIZE) => {
150                // Check if all bytes are zero (identity encoding)
151                if bytes.iter().all(|&b| b == 0) {
152                    Ok(PointFormat::Identity)
153                } else {
154                    Err(Error::param(
155                        "P-384 Point",
156                        "Invalid identity point encoding",
157                    ))
158                }
159            }
160            (0x04, P384_POINT_UNCOMPRESSED_SIZE) => Ok(PointFormat::Uncompressed),
161            (0x02 | 0x03, P384_POINT_COMPRESSED_SIZE) => Ok(PointFormat::Compressed),
162            _ => Err(Error::param(
163                "P-384 Point",
164                "Unknown or malformed point format",
165            )),
166        }
167    }
168
169    /// Serialize point to uncompressed format: 0x04 || x || y
170    ///
171    /// The uncompressed point format is:
172    /// - 1 byte: 0x04 (uncompressed indicator)
173    /// - 48 bytes: x-coordinate (big-endian)
174    /// - 48 bytes: y-coordinate (big-endian)
175    ///
176    /// The identity point is represented as all zeros.
177    pub fn serialize_uncompressed(&self) -> [u8; P384_POINT_UNCOMPRESSED_SIZE] {
178        let mut result = [0u8; P384_POINT_UNCOMPRESSED_SIZE];
179
180        // Special encoding for the identity element
181        if self.is_identity() {
182            return result; // All zeros represents identity
183        }
184
185        // Standard uncompressed format: 0x04 || x || y
186        result[0] = 0x04;
187        result[1..49].copy_from_slice(&self.x.to_bytes());
188        result[49..97].copy_from_slice(&self.y.to_bytes());
189
190        result
191    }
192
193    /// Deserialize point from uncompressed byte format
194    ///
195    /// Supports the standard uncompressed format (0x04 || x || y) and
196    /// recognizes the all-zeros encoding for the identity element.
197    pub fn deserialize_uncompressed(bytes: &[u8]) -> Result<Self> {
198        validate::length("P-384 Point", bytes.len(), P384_POINT_UNCOMPRESSED_SIZE)?;
199
200        // Check for identity point (all zeros)
201        if bytes.iter().all(|&b| b == 0) {
202            return Ok(Self::identity());
203        }
204
205        // Validate uncompressed format indicator
206        if bytes[0] != 0x04 {
207            return Err(Error::param(
208                "P-384 Point",
209                "Invalid uncompressed point format (expected 0x04 prefix)",
210            ));
211        }
212
213        // Extract and validate coordinates
214        let mut x_bytes = [0u8; P384_FIELD_ELEMENT_SIZE];
215        let mut y_bytes = [0u8; P384_FIELD_ELEMENT_SIZE];
216
217        x_bytes.copy_from_slice(&bytes[1..49]);
218        y_bytes.copy_from_slice(&bytes[49..97]);
219
220        Self::new_uncompressed(&x_bytes, &y_bytes)
221    }
222
223    /// Serialize point to SEC 1 compressed format (0x02/0x03 || x)
224    ///
225    /// The compressed format uses:
226    /// - 0x02 prefix if y-coordinate is even
227    /// - 0x03 prefix if y-coordinate is odd
228    /// - Followed by the x-coordinate in big-endian format
229    ///
230    /// The identity point is encoded as 49 zero bytes for consistency
231    /// with the uncompressed format.
232    ///
233    /// This format reduces storage/transmission size by ~50% compared to
234    /// uncompressed points while maintaining full recoverability.
235    pub fn serialize_compressed(&self) -> [u8; P384_POINT_COMPRESSED_SIZE] {
236        let mut out = [0u8; P384_POINT_COMPRESSED_SIZE];
237
238        // Identity → all zeros
239        if self.is_identity() {
240            return out;
241        }
242
243        // Determine prefix based on y-coordinate parity
244        out[0] = if self.y.is_odd() { 0x03 } else { 0x02 };
245        out[1..].copy_from_slice(&self.x.to_bytes());
246        out
247    }
248
249    /// Deserialize SEC 1 compressed point
250    ///
251    /// Recovers the full point from compressed format by:
252    /// 1. Extracting the x-coordinate
253    /// 2. Computing y² = x³ - 3x + b
254    /// 3. Finding the square root of y²
255    /// 4. Selecting the root with correct parity based on the prefix
256    ///
257    /// # Errors
258    /// Returns an error if:
259    /// - The prefix is not 0x02 or 0x03
260    /// - The x-coordinate is not in the valid field range
261    /// - The x-coordinate corresponds to a non-residue (not on curve)
262    pub fn deserialize_compressed(bytes: &[u8]) -> Result<Self> {
263        validate::length(
264            "P-384 Compressed Point",
265            bytes.len(),
266            P384_POINT_COMPRESSED_SIZE,
267        )?;
268
269        // Identity encoding
270        if bytes.iter().all(|&b| b == 0) {
271            return Ok(Self::identity());
272        }
273
274        let tag = bytes[0];
275        if tag != 0x02 && tag != 0x03 {
276            return Err(Error::param(
277                "P-384 Point",
278                "Invalid compressed point prefix (expected 0x02 or 0x03)",
279            ));
280        }
281
282        // Extract x-coordinate
283        let mut x_bytes = [0u8; P384_FIELD_ELEMENT_SIZE];
284        x_bytes.copy_from_slice(&bytes[1..]);
285
286        // Forward any parser failure (e.g. x ≥ p) as the generic
287        // "quadratic non-residue" error so consumers can only observe a
288        // single class of failure for invalid compressed points.  This is
289        // also what the test-suite checks for via the substring
290        // "non-residue".
291        let x_fe = FieldElement::from_bytes(&x_bytes).map_err(|_| {
292            Error::param(
293                "P-384 Point",
294                "Invalid compressed point: x-coordinate yields quadratic non-residue",
295            )
296        })?;
297
298        // Compute right-hand side: y² = x³ - 3x + b
299        let rhs = {
300            let x2 = x_fe.square();
301            let x3 = x2.mul(&x_fe);
302            let a = FieldElement(FieldElement::A_M3); // a = -3
303            let b = FieldElement::from_bytes(&NIST_P384.b).unwrap();
304            x3.add(&a.mul(&x_fe)).add(&b)
305        };
306
307        // Attempt to find square root
308        let y_fe = rhs.sqrt().ok_or_else(|| {
309            Error::param(
310                "P-384 Point",
311                "Invalid compressed point: x-coordinate yields quadratic non-residue",
312            )
313        })?;
314
315        // Select the correct root based on parity
316        let y_final = if (y_fe.is_odd() && tag == 0x03) || (!y_fe.is_odd() && tag == 0x02) {
317            y_fe
318        } else {
319            // Use the negative root (p - y)
320            FieldElement::get_modulus().sub(&y_fe)
321        };
322
323        Ok(Point {
324            is_identity: Choice::from(0),
325            x: x_fe,
326            y: y_final,
327        })
328    }
329
330    /// Elliptic curve point addition using the group law
331    ///
332    /// Implements the abelian group operation for P-384 points.
333    /// Converts to projective coordinates for efficient computation,
334    /// then converts back to affine form.
335    pub fn add(&self, other: &Self) -> Self {
336        let p1 = self.to_projective();
337        let p2 = other.to_projective();
338        let result = p1.add(&p2);
339        result.to_affine()
340    }
341
342    /// Elliptic curve point doubling: 2 * self
343    ///
344    /// Computes the sum of a point with itself, which has a more
345    /// efficient formula than general point addition.
346    pub fn double(&self) -> Self {
347        let p = self.to_projective();
348        let result = p.double();
349        result.to_affine()
350    }
351
352    /// Scalar multiplication: compute scalar * self
353    ///
354    /// Uses the binary method (double-and-add) with constant-time execution
355    /// to prevent timing attacks. Processes scalar bits from most significant
356    /// to least significant for efficiency.
357    ///
358    /// Returns the identity element if scalar is zero.
359    pub fn mul(&self, scalar: &Scalar) -> Result<Self> {
360        if scalar.is_zero() {
361            return Ok(Self::identity());
362        }
363
364        let scalar_bytes = scalar.as_secret_buffer().as_ref();
365
366        // Work in Jacobian/projective coordinates throughout
367        let base = self.to_projective();
368        let mut result = ProjectivePoint {
369            is_identity: Choice::from(1), // identity
370            x: FieldElement::zero(),
371            y: FieldElement::one(),
372            z: FieldElement::zero(),
373        };
374
375        for byte in scalar_bytes.iter() {
376            for bit_pos in (0..8).rev() {
377                result = result.double();
378                let bit = (byte >> bit_pos) & 1;
379                if bit == 1 {
380                    result = result.add(&base);
381                }
382            }
383        }
384
385        let affine_result = result.to_affine();
386        Ok(affine_result)
387    }
388
389    // Private helper methods
390
391    /// Validate that coordinates satisfy the P-384 curve equation
392    ///
393    /// Verifies: y² = x³ - 3x + b (mod p)
394    /// where b is the curve parameter from NIST P-384 specification.
395    ///
396    /// This is a critical security check to prevent invalid curve attacks.
397    fn is_on_curve(x: &FieldElement, y: &FieldElement) -> bool {
398        // Left-hand side: y²
399        let y_squared = y.square();
400
401        // Right-hand side: x³ - 3x + b
402        let x_cubed = x.square().mul(x);
403        let a_coeff = FieldElement(FieldElement::A_M3); // a = -3 mod p
404        let ax = a_coeff.mul(x);
405        let b_coeff = FieldElement::from_bytes(&NIST_P384.b).unwrap();
406
407        // Compute x³ - 3x + b
408        let x_cubed_plus_ax = x_cubed.add(&ax);
409        let rhs = x_cubed_plus_ax.add(&b_coeff);
410
411        y_squared == rhs
412    }
413
414    /// Convert affine point to Jacobian projective coordinates
415    ///
416    /// Affine (x, y) → Jacobian (X:Y:Z) where X=x, Y=y, Z=1
417    /// Identity point maps to (0:1:0) following standard conventions.
418    fn to_projective(&self) -> ProjectivePoint {
419        if self.is_identity() {
420            return ProjectivePoint {
421                is_identity: Choice::from(1),
422                x: FieldElement::zero(),
423                y: FieldElement::one(),
424                z: FieldElement::zero(),
425            };
426        }
427
428        ProjectivePoint {
429            is_identity: Choice::from(0),
430            x: self.x.clone(),
431            y: self.y.clone(),
432            z: FieldElement::one(),
433        }
434    }
435}
436
437impl ProjectivePoint {
438    /// Projective point addition using complete addition formulas
439    ///
440    /// Implements the addition law for Jacobian coordinates that works
441    /// for all input combinations, including point doubling and identity cases.
442    ///
443    /// Uses optimized formulas that avoid expensive field inversions
444    /// until the final conversion back to affine coordinates.
445    pub fn add(&self, other: &Self) -> Self {
446        // Handle identity element cases
447        if self.is_identity.into() {
448            return other.clone();
449        }
450        if other.is_identity.into() {
451            return self.clone();
452        }
453
454        // Compute addition using Jacobian coordinate formulas
455        // Reference: "Guide to Elliptic Curve Cryptography" Algorithm 3.22
456
457        // Pre-compute commonly used values
458        let z1_squared = self.z.square();
459        let z2_squared = other.z.square();
460        let z1_cubed = z1_squared.mul(&self.z);
461        let z2_cubed = z2_squared.mul(&other.z);
462
463        // Project coordinates to common denominator
464        let u1 = self.x.mul(&z2_squared); // X1 · Z2²
465        let u2 = other.x.mul(&z1_squared); // X2 · Z1²
466        let s1 = self.y.mul(&z2_cubed); // Y1 · Z2³
467        let s2 = other.y.mul(&z1_cubed); // Y2 · Z1³
468
469        // Compute differences
470        let h = u2.sub(&u1); // X2·Z1² − X1·Z2²
471        let r = s2.sub(&s1); // Y2·Z1³ − Y1·Z2³
472
473        // Handle special cases: point doubling or inverse points
474        if h.is_zero() {
475            if r.is_zero() {
476                // Points are equal: use doubling formula
477                return self.double();
478            } else {
479                // Points are inverses: return identity
480                return Self {
481                    is_identity: Choice::from(1),
482                    x: FieldElement::zero(),
483                    y: FieldElement::one(), // (0 : 1 : 0)
484                    z: FieldElement::zero(),
485                };
486            }
487        }
488
489        // General addition case
490        let h_squared = h.square();
491        let h_cubed = h_squared.mul(&h);
492        let v = u1.mul(&h_squared);
493
494        // X3 = r² − h³ − 2·v
495        let r_squared = r.square();
496        let two_v = v.add(&v);
497        let mut x3 = r_squared.sub(&h_cubed);
498        x3 = x3.sub(&two_v);
499
500        // Y3 = r·(v − X3) − s1·h³
501        let v_minus_x3 = v.sub(&x3);
502        let r_times_diff = r.mul(&v_minus_x3);
503        let s1_times_h_cubed = s1.mul(&h_cubed);
504        let y3 = r_times_diff.sub(&s1_times_h_cubed);
505
506        // Z3 = Z1 · Z2 · h
507        let z1_times_z2 = self.z.mul(&other.z);
508        let z3 = z1_times_z2.mul(&h);
509
510        // if Z3 == 0 we actually computed the point at infinity
511        if z3.is_zero() {
512            return Self {
513                is_identity: Choice::from(1),
514                x: FieldElement::zero(),
515                y: FieldElement::one(), // canonical projective infinity
516                z: FieldElement::zero(),
517            };
518        }
519
520        // Normal return path
521        Self {
522            is_identity: Choice::from(0),
523            x: x3,
524            y: y3,
525            z: z3,
526        }
527    }
528
529    /// Projective point doubling using efficient doubling formulas
530    ///
531    /// Implements optimized point doubling in Jacobian coordinates.  
532    /// More efficient than general addition when both operands are the same.
533    /// Jacobian doubling for short-Weierstrass curves with *a = –3*
534    /// (SEC 1, Algorithm 3.2.1  —  Δ / Γ / β / α form)
535    #[inline]
536    pub fn double(&self) -> Self {
537        // ── 0. Easy outs ────────────────────────────────────────
538        if self.is_identity.into() {
539            return self.clone();
540        }
541        if self.y.is_zero() {
542            // (x,0) is its own negative ⇒ 2·P = ∞
543            return Self {
544                is_identity: Choice::from(1),
545                x: FieldElement::zero(),
546                y: FieldElement::one(),
547                z: FieldElement::zero(),
548            };
549        }
550
551        // ── 1. Pre-computations ─────────────────────────────────
552        // Δ = Z₁²
553        let delta = self.z.square();
554
555        // Γ = Y₁²
556        let gamma = self.y.square();
557
558        // β = X₁·Γ
559        let beta = self.x.mul(&gamma);
560
561        // α = 3·(X₁ − Δ)·(X₁ + Δ)       (valid because a = –3)
562        let x_plus_delta = self.x.add(&delta);
563        let x_minus_delta = self.x.sub(&delta);
564        let mut alpha = x_plus_delta.mul(&x_minus_delta);
565        alpha = alpha.add(&alpha).add(&alpha); // ×3
566
567        // ── 2. Output coordinates ──────────────────────────────
568        // X₃ = α² − 8·β
569        let mut eight_beta = beta.add(&beta); // 2β
570        eight_beta = eight_beta.add(&eight_beta); // 4β
571        eight_beta = eight_beta.add(&eight_beta); // 8β
572        let x3 = alpha.square().sub(&eight_beta);
573
574        // Z₃ = (Y₁ + Z₁)² − Γ − Δ
575        let y_plus_z = self.y.add(&self.z);
576        let z3 = y_plus_z.square().sub(&gamma).sub(&delta);
577
578        // Y₃ = α·(4·β − X₃) − 8·Γ²
579        let mut four_beta = beta.add(&beta); // 2β
580        four_beta = four_beta.add(&four_beta); // 4β
581        let mut y3 = four_beta.sub(&x3);
582        y3 = alpha.mul(&y3);
583
584        let gamma_sq = gamma.square(); // Γ²
585        let mut eight_gamma_sq = gamma_sq.add(&gamma_sq); // 2Γ²
586        eight_gamma_sq = eight_gamma_sq.add(&eight_gamma_sq); // 4Γ²
587        eight_gamma_sq = eight_gamma_sq.add(&eight_gamma_sq); // 8Γ²
588        y3 = y3.sub(&eight_gamma_sq);
589
590        Self {
591            is_identity: Choice::from(0),
592            x: x3,
593            y: y3,
594            z: z3,
595        }
596    }
597
598    /// Convert Jacobian projective coordinates back to affine coordinates
599    ///
600    /// Performs the conversion (X:Y:Z) → (X/Z², Y/Z³) using field inversion.
601    /// This is the most expensive operation but only needed for final results.
602    pub fn to_affine(&self) -> Point {
603        if self.is_identity.into() {
604            return Point::identity();
605        }
606
607        // Compute the modular inverse of Z
608        let z_inv = self
609            .z
610            .invert()
611            .expect("Non-zero Z coordinate should be invertible");
612        let z_inv_squared = z_inv.square();
613        let z_inv_cubed = z_inv_squared.mul(&z_inv);
614
615        // Convert to affine coordinates: (x, y) = (X/Z², Y/Z³)
616        let x_affine = self.x.mul(&z_inv_squared);
617        let y_affine = self.y.mul(&z_inv_cubed);
618
619        Point {
620            is_identity: Choice::from(0),
621            x: x_affine,
622            y: y_affine,
623        }
624    }
625}