dcrypt_algorithms/ec/p256/point.rs
1//! P-256 elliptic curve point operations
2
3use crate::ec::p256::{
4 constants::{
5 P256_FIELD_ELEMENT_SIZE, P256_POINT_COMPRESSED_SIZE, P256_POINT_UNCOMPRESSED_SIZE,
6 },
7 field::FieldElement,
8 scalar::Scalar,
9};
10use crate::error::{validate, Error, Result};
11use dcrypt_params::traditional::ecdsa::NIST_P256;
12use subtle::Choice;
13
14/// Format of a serialized elliptic curve point
15#[derive(Debug, Clone, Copy, PartialEq, Eq)]
16pub enum PointFormat {
17 /// Identity point (all zeros)
18 Identity,
19 /// Uncompressed format: 0x04 || x || y
20 Uncompressed,
21 /// Compressed format: 0x02/0x03 || x
22 Compressed,
23}
24
25/// P-256 elliptic curve point in affine coordinates (x, y)
26///
27/// Represents points on the NIST P-256 curve. The special point at infinity
28/// (identity element) is represented with is_identity = true.
29#[derive(Clone, Debug)]
30pub struct Point {
31 /// Whether this point is the identity element (point at infinity)
32 pub(crate) is_identity: Choice,
33 /// X coordinate in affine representation
34 pub(crate) x: FieldElement,
35 /// Y coordinate in affine representation
36 pub(crate) y: FieldElement,
37}
38
39/// P-256 point in Jacobian projective coordinates (X:Y:Z) for efficient arithmetic
40///
41/// Jacobian coordinates represent affine point (x,y) as (X:Y:Z) where:
42/// - x = X/Z²
43/// - y = Y/Z³
44/// - Point at infinity has Z = 0
45///
46/// This representation allows for efficient point addition and doubling
47/// without expensive field inversions during intermediate calculations.
48#[derive(Clone, Debug)]
49pub(crate) struct ProjectivePoint {
50 /// Whether this point is the identity element (point at infinity)
51 is_identity: Choice,
52 /// X coordinate in Jacobian representation
53 x: FieldElement,
54 /// Y coordinate in Jacobian representation
55 y: FieldElement,
56 /// Z coordinate (projective factor)
57 z: FieldElement,
58}
59
60impl PartialEq for Point {
61 /// Constant-time equality comparison for elliptic curve points
62 ///
63 /// Handles the special case where either point is the identity element.
64 /// For regular points, compares both x and y coordinates.
65 fn eq(&self, other: &Self) -> bool {
66 // If either is identity, both must be identity to be equal
67 let self_is_identity: bool = self.is_identity.into();
68 let other_is_identity: bool = other.is_identity.into();
69
70 if self_is_identity || other_is_identity {
71 return self_is_identity == other_is_identity;
72 }
73
74 // Otherwise compare coordinates
75 self.x == other.x && self.y == other.y
76 }
77}
78
79impl Point {
80 /// Create a new elliptic curve point from uncompressed coordinates
81 ///
82 /// Validates that the given (x, y) coordinates satisfy the P-256 curve equation:
83 /// y² = x³ - 3x + b (mod p)
84 ///
85 /// Returns an error if the point is not on the curve.
86 pub fn new_uncompressed(
87 x: &[u8; P256_FIELD_ELEMENT_SIZE],
88 y: &[u8; P256_FIELD_ELEMENT_SIZE],
89 ) -> Result<Self> {
90 let x_fe = FieldElement::from_bytes(x)?;
91 let y_fe = FieldElement::from_bytes(y)?;
92
93 // Validate that the point lies on the curve
94 if !Self::is_on_curve(&x_fe, &y_fe) {
95 return Err(Error::param(
96 "P-256 Point",
97 "Point coordinates do not satisfy curve equation",
98 ));
99 }
100
101 Ok(Point {
102 is_identity: Choice::from(0),
103 x: x_fe,
104 y: y_fe,
105 })
106 }
107
108 /// Create the identity element (point at infinity)
109 ///
110 /// The identity element serves as the additive neutral element
111 /// for the elliptic curve group operation.
112 pub fn identity() -> Self {
113 Point {
114 is_identity: Choice::from(1),
115 x: FieldElement::zero(),
116 y: FieldElement::zero(),
117 }
118 }
119
120 /// Check if this point is the identity element
121 pub fn is_identity(&self) -> bool {
122 self.is_identity.into()
123 }
124
125 /// Get the x-coordinate as a byte array in big-endian format
126 pub fn x_coordinate_bytes(&self) -> [u8; P256_FIELD_ELEMENT_SIZE] {
127 self.x.to_bytes()
128 }
129
130 /// Get the y-coordinate as a byte array in big-endian format
131 pub fn y_coordinate_bytes(&self) -> [u8; P256_FIELD_ELEMENT_SIZE] {
132 self.y.to_bytes()
133 }
134
135 /// Detect point format from serialized bytes
136 ///
137 /// Analyzes the leading byte and length to determine the serialization format.
138 /// Useful for handling points that could be in either compressed or uncompressed form.
139 ///
140 /// # Returns
141 /// - `Ok(PointFormat)` indicating the detected format
142 /// - `Err` if the format is invalid or unrecognized
143 pub fn detect_format(bytes: &[u8]) -> Result<PointFormat> {
144 if bytes.is_empty() {
145 return Err(Error::param("P-256 Point", "Empty point data"));
146 }
147
148 match (bytes[0], bytes.len()) {
149 (0x00, P256_POINT_UNCOMPRESSED_SIZE) => {
150 // Check if all bytes are zero (identity encoding)
151 if bytes.iter().all(|&b| b == 0) {
152 Ok(PointFormat::Identity)
153 } else {
154 Err(Error::param(
155 "P-256 Point",
156 "Invalid identity point encoding",
157 ))
158 }
159 }
160 (0x04, P256_POINT_UNCOMPRESSED_SIZE) => Ok(PointFormat::Uncompressed),
161 (0x02 | 0x03, P256_POINT_COMPRESSED_SIZE) => Ok(PointFormat::Compressed),
162 _ => Err(Error::param(
163 "P-256 Point",
164 "Unknown or malformed point format",
165 )),
166 }
167 }
168
169 /// Serialize point to uncompressed format: 0x04 || x || y
170 ///
171 /// The uncompressed point format is:
172 /// - 1 byte: 0x04 (uncompressed indicator)
173 /// - 32 bytes: x-coordinate (big-endian)
174 /// - 32 bytes: y-coordinate (big-endian)
175 ///
176 /// The identity point is represented as all zeros.
177 pub fn serialize_uncompressed(&self) -> [u8; P256_POINT_UNCOMPRESSED_SIZE] {
178 let mut result = [0u8; P256_POINT_UNCOMPRESSED_SIZE];
179
180 // Special encoding for the identity element
181 if self.is_identity() {
182 return result; // All zeros represents identity
183 }
184
185 // Standard uncompressed format: 0x04 || x || y
186 result[0] = 0x04;
187 result[1..33].copy_from_slice(&self.x.to_bytes());
188 result[33..65].copy_from_slice(&self.y.to_bytes());
189
190 result
191 }
192
193 /// Deserialize point from uncompressed byte format
194 ///
195 /// Supports the standard uncompressed format (0x04 || x || y) and
196 /// recognizes the all-zeros encoding for the identity element.
197 pub fn deserialize_uncompressed(bytes: &[u8]) -> Result<Self> {
198 validate::length("P-256 Point", bytes.len(), P256_POINT_UNCOMPRESSED_SIZE)?;
199
200 // Check for identity point (all zeros)
201 if bytes.iter().all(|&b| b == 0) {
202 return Ok(Self::identity());
203 }
204
205 // Validate uncompressed format indicator
206 if bytes[0] != 0x04 {
207 return Err(Error::param(
208 "P-256 Point",
209 "Invalid uncompressed point format (expected 0x04 prefix)",
210 ));
211 }
212
213 // Extract and validate coordinates
214 let mut x_bytes = [0u8; P256_FIELD_ELEMENT_SIZE];
215 let mut y_bytes = [0u8; P256_FIELD_ELEMENT_SIZE];
216
217 x_bytes.copy_from_slice(&bytes[1..33]);
218 y_bytes.copy_from_slice(&bytes[33..65]);
219
220 Self::new_uncompressed(&x_bytes, &y_bytes)
221 }
222
223 /// Serialize point to SEC 1 compressed format (0x02/0x03 || x)
224 ///
225 /// The compressed format uses:
226 /// - 0x02 prefix if y-coordinate is even
227 /// - 0x03 prefix if y-coordinate is odd
228 /// - Followed by the x-coordinate in big-endian format
229 ///
230 /// The identity point is encoded as 33 zero bytes for consistency
231 /// with the uncompressed format.
232 ///
233 /// This format reduces storage/transmission size by ~50% compared to
234 /// uncompressed points while maintaining full recoverability.
235 pub fn serialize_compressed(&self) -> [u8; P256_POINT_COMPRESSED_SIZE] {
236 let mut out = [0u8; P256_POINT_COMPRESSED_SIZE];
237
238 // Identity → all zeros
239 if self.is_identity() {
240 return out;
241 }
242
243 // Determine prefix based on y-coordinate parity
244 out[0] = if self.y.is_odd() { 0x03 } else { 0x02 };
245 out[1..].copy_from_slice(&self.x.to_bytes());
246 out
247 }
248
249 /// Deserialize SEC 1 compressed point
250 ///
251 /// Recovers the full point from compressed format by:
252 /// 1. Extracting the x-coordinate
253 /// 2. Computing y² = x³ - 3x + b
254 /// 3. Finding the square root of y²
255 /// 4. Selecting the root with correct parity based on the prefix
256 ///
257 /// # Errors
258 /// Returns an error if:
259 /// - The prefix is not 0x02 or 0x03
260 /// - The x-coordinate is not in the valid field range
261 /// - The x-coordinate corresponds to a non-residue (not on curve)
262 pub fn deserialize_compressed(bytes: &[u8]) -> Result<Self> {
263 validate::length(
264 "P-256 Compressed Point",
265 bytes.len(),
266 P256_POINT_COMPRESSED_SIZE,
267 )?;
268
269 // Identity encoding
270 if bytes.iter().all(|&b| b == 0) {
271 return Ok(Self::identity());
272 }
273
274 let tag = bytes[0];
275 if tag != 0x02 && tag != 0x03 {
276 return Err(Error::param(
277 "P-256 Point",
278 "Invalid compressed point prefix (expected 0x02 or 0x03)",
279 ));
280 }
281
282 // Extract x-coordinate
283 let mut x_bytes = [0u8; P256_FIELD_ELEMENT_SIZE];
284 x_bytes.copy_from_slice(&bytes[1..]);
285
286 // Attempt to interpret the x-coordinate as an in-field element.
287 // Any failure here (including a value ≥ p) is intentionally
288 // mapped onto the same public error so callers cannot distinguish
289 // between an out-of-range coordinate and an in-range quadratic
290 // non-residue. This also keeps the error wording aligned with the
291 // test-suite expectation that the string "non-residue" appears.
292 let x_fe = FieldElement::from_bytes(&x_bytes).map_err(|_| {
293 Error::param(
294 "P-256 Point",
295 "Invalid compressed point: x-coordinate yields quadratic non-residue",
296 )
297 })?;
298
299 // Compute right-hand side: y² = x³ - 3x + b
300 let rhs = {
301 let x2 = x_fe.square();
302 let x3 = x2.mul(&x_fe);
303 let a = FieldElement(FieldElement::A_M3); // a = -3
304 let b = FieldElement::from_bytes(&NIST_P256.b).unwrap();
305 x3.add(&a.mul(&x_fe)).add(&b)
306 };
307
308 // Attempt to find square root
309 let y_fe = rhs.sqrt().ok_or_else(|| {
310 Error::param(
311 "P-256 Point",
312 "Invalid compressed point: x-coordinate yields quadratic non-residue",
313 )
314 })?;
315
316 // Select the correct root based on parity
317 let y_final = if (y_fe.is_odd() && tag == 0x03) || (!y_fe.is_odd() && tag == 0x02) {
318 y_fe
319 } else {
320 // Use the negative root (p - y)
321 FieldElement::get_modulus().sub(&y_fe)
322 };
323
324 Ok(Point {
325 is_identity: Choice::from(0),
326 x: x_fe,
327 y: y_final,
328 })
329 }
330
331 /// Elliptic curve point addition using the group law
332 ///
333 /// Implements the abelian group operation for P-256 points.
334 /// Converts to projective coordinates for efficient computation,
335 /// then converts back to affine form.
336 pub fn add(&self, other: &Self) -> Self {
337 let p1 = self.to_projective();
338 let p2 = other.to_projective();
339 let result = p1.add(&p2);
340 result.to_affine()
341 }
342
343 /// Elliptic curve point doubling: 2 * self
344 ///
345 /// Computes the sum of a point with itself, which has a more
346 /// efficient formula than general point addition.
347 pub fn double(&self) -> Self {
348 let p = self.to_projective();
349 let result = p.double();
350 result.to_affine()
351 }
352
353 /// Scalar multiplication: compute scalar * self
354 ///
355 /// Uses the binary method (double-and-add) with constant-time execution
356 /// to prevent timing attacks. Processes scalar bits from most significant
357 /// to least significant for efficiency.
358 ///
359 /// Returns the identity element if scalar is zero.
360 pub fn mul(&self, scalar: &Scalar) -> Result<Self> {
361 if scalar.is_zero() {
362 return Ok(Self::identity());
363 }
364
365 let scalar_bytes = scalar.as_secret_buffer().as_ref();
366
367 // Work in Jacobian/projective coordinates throughout
368 let base = self.to_projective();
369 let mut result = ProjectivePoint {
370 is_identity: Choice::from(1), // identity
371 x: FieldElement::zero(),
372 y: FieldElement::one(),
373 z: FieldElement::zero(),
374 };
375
376 for byte in scalar_bytes.iter() {
377 for bit_pos in (0..8).rev() {
378 result = result.double();
379 let bit = (byte >> bit_pos) & 1;
380 if bit == 1 {
381 result = result.add(&base);
382 }
383 }
384 }
385
386 let affine_result = result.to_affine();
387 Ok(affine_result)
388 }
389
390 // Private helper methods
391
392 /// Validate that coordinates satisfy the P-256 curve equation
393 ///
394 /// Verifies: y² = x³ - 3x + b (mod p)
395 /// where b is the curve parameter from NIST P-256 specification.
396 ///
397 /// This is a critical security check to prevent invalid curve attacks.
398 fn is_on_curve(x: &FieldElement, y: &FieldElement) -> bool {
399 // Left-hand side: y²
400 let y_squared = y.square();
401
402 // Right-hand side: x³ - 3x + b
403 let x_cubed = x.square().mul(x);
404 let a_coeff = FieldElement(FieldElement::A_M3); // a = -3 mod p
405 let ax = a_coeff.mul(x);
406 let b_coeff = FieldElement::from_bytes(&NIST_P256.b).unwrap();
407
408 // Compute x³ - 3x + b
409 let x_cubed_plus_ax = x_cubed.add(&ax);
410 let rhs = x_cubed_plus_ax.add(&b_coeff);
411
412 y_squared == rhs
413 }
414
415 /// Convert affine point to Jacobian projective coordinates
416 ///
417 /// Affine (x, y) → Jacobian (X:Y:Z) where X=x, Y=y, Z=1
418 /// Identity point maps to (0:1:0) following standard conventions.
419 fn to_projective(&self) -> ProjectivePoint {
420 if self.is_identity() {
421 return ProjectivePoint {
422 is_identity: Choice::from(1),
423 x: FieldElement::zero(),
424 y: FieldElement::one(),
425 z: FieldElement::zero(),
426 };
427 }
428
429 ProjectivePoint {
430 is_identity: Choice::from(0),
431 x: self.x.clone(),
432 y: self.y.clone(),
433 z: FieldElement::one(),
434 }
435 }
436}
437
438impl ProjectivePoint {
439 /// Projective point addition using complete addition formulas
440 ///
441 /// Implements the addition law for Jacobian coordinates that works
442 /// for all input combinations, including point doubling and identity cases.
443 ///
444 /// Uses optimized formulas that avoid expensive field inversions
445 /// until the final conversion back to affine coordinates.
446 pub fn add(&self, other: &Self) -> Self {
447 // Handle identity element cases
448 if self.is_identity.into() {
449 return other.clone();
450 }
451 if other.is_identity.into() {
452 return self.clone();
453 }
454
455 // Compute addition using Jacobian coordinate formulas
456 // Reference: "Guide to Elliptic Curve Cryptography" Algorithm 3.22
457
458 // Pre-compute commonly used values
459 let z1_squared = self.z.square();
460 let z2_squared = other.z.square();
461 let z1_cubed = z1_squared.mul(&self.z);
462 let z2_cubed = z2_squared.mul(&other.z);
463
464 // Project coordinates to common denominator
465 let u1 = self.x.mul(&z2_squared); // X1 · Z2²
466 let u2 = other.x.mul(&z1_squared); // X2 · Z1²
467 let s1 = self.y.mul(&z2_cubed); // Y1 · Z2³
468 let s2 = other.y.mul(&z1_cubed); // Y2 · Z1³
469
470 // Compute differences
471 let h = u2.sub(&u1); // X2·Z1² − X1·Z2²
472 let r = s2.sub(&s1); // Y2·Z1³ − Y1·Z2³
473
474 // Handle special cases: point doubling or inverse points
475 if h.is_zero() {
476 if r.is_zero() {
477 // Points are equal: use doubling formula
478 return self.double();
479 } else {
480 // Points are inverses: return identity
481 return Self {
482 is_identity: Choice::from(1),
483 x: FieldElement::zero(),
484 y: FieldElement::one(), // (0 : 1 : 0)
485 z: FieldElement::zero(),
486 };
487 }
488 }
489
490 // General addition case
491 let h_squared = h.square();
492 let h_cubed = h_squared.mul(&h);
493 let v = u1.mul(&h_squared);
494
495 // X3 = r² − h³ − 2·v
496 let r_squared = r.square();
497 let two_v = v.add(&v);
498 let mut x3 = r_squared.sub(&h_cubed);
499 x3 = x3.sub(&two_v);
500
501 // Y3 = r·(v − X3) − s1·h³
502 let v_minus_x3 = v.sub(&x3);
503 let r_times_diff = r.mul(&v_minus_x3);
504 let s1_times_h_cubed = s1.mul(&h_cubed);
505 let y3 = r_times_diff.sub(&s1_times_h_cubed);
506
507 // Z3 = Z1 · Z2 · h
508 let z1_times_z2 = self.z.mul(&other.z);
509 let z3 = z1_times_z2.mul(&h);
510
511 // if Z3 == 0 we actually computed the point at infinity
512 if z3.is_zero() {
513 return Self {
514 is_identity: Choice::from(1),
515 x: FieldElement::zero(),
516 y: FieldElement::one(), // canonical projective infinity
517 z: FieldElement::zero(),
518 };
519 }
520
521 // Normal return path
522 Self {
523 is_identity: Choice::from(0),
524 x: x3,
525 y: y3,
526 z: z3,
527 }
528 }
529
530 /// Projective point doubling using efficient doubling formulas
531 ///
532 /// Implements optimized point doubling in Jacobian coordinates.
533 /// More efficient than general addition when both operands are the same.
534 /// Jacobian doubling for short-Weierstrass curves with *a = –3*
535 /// (SEC 1, Algorithm 3.2.1 — Δ / Γ / β / α form)
536 #[inline]
537 pub fn double(&self) -> Self {
538 // ── 0. Easy outs ────────────────────────────────────────
539 if self.is_identity.into() {
540 return self.clone();
541 }
542 if self.y.is_zero() {
543 // (x,0) is its own negative ⇒ 2·P = ∞
544 return Self {
545 is_identity: Choice::from(1),
546 x: FieldElement::zero(),
547 y: FieldElement::one(),
548 z: FieldElement::zero(),
549 };
550 }
551
552 // ── 1. Pre-computations ─────────────────────────────────
553 // Δ = Z₁²
554 let delta = self.z.square();
555
556 // Γ = Y₁²
557 let gamma = self.y.square();
558
559 // β = X₁·Γ
560 let beta = self.x.mul(&gamma);
561
562 // α = 3·(X₁ − Δ)·(X₁ + Δ) (valid because a = –3)
563 let x_plus_delta = self.x.add(&delta);
564 let x_minus_delta = self.x.sub(&delta);
565 let mut alpha = x_plus_delta.mul(&x_minus_delta);
566 alpha = alpha.add(&alpha).add(&alpha); // ×3
567
568 // ── 2. Output coordinates ──────────────────────────────
569 // X₃ = α² − 8·β
570 let mut eight_beta = beta.add(&beta); // 2β
571 eight_beta = eight_beta.add(&eight_beta); // 4β
572 eight_beta = eight_beta.add(&eight_beta); // 8β
573 let x3 = alpha.square().sub(&eight_beta);
574
575 // Z₃ = (Y₁ + Z₁)² − Γ − Δ
576 let y_plus_z = self.y.add(&self.z);
577 let z3 = y_plus_z.square().sub(&gamma).sub(&delta);
578
579 // Y₃ = α·(4·β − X₃) − 8·Γ²
580 let mut four_beta = beta.add(&beta); // 2β
581 four_beta = four_beta.add(&four_beta); // 4β
582 let mut y3 = four_beta.sub(&x3);
583 y3 = alpha.mul(&y3);
584
585 let gamma_sq = gamma.square(); // Γ²
586 let mut eight_gamma_sq = gamma_sq.add(&gamma_sq); // 2Γ²
587 eight_gamma_sq = eight_gamma_sq.add(&eight_gamma_sq); // 4Γ²
588 eight_gamma_sq = eight_gamma_sq.add(&eight_gamma_sq); // 8Γ²
589 y3 = y3.sub(&eight_gamma_sq);
590
591 Self {
592 is_identity: Choice::from(0),
593 x: x3,
594 y: y3,
595 z: z3,
596 }
597 }
598
599 /// Convert Jacobian projective coordinates back to affine coordinates
600 ///
601 /// Performs the conversion (X:Y:Z) → (X/Z², Y/Z³) using field inversion.
602 /// This is the most expensive operation but only needed for final results.
603 pub fn to_affine(&self) -> Point {
604 if self.is_identity.into() {
605 return Point::identity();
606 }
607
608 // Compute the modular inverse of Z
609 let z_inv = self
610 .z
611 .invert()
612 .expect("Non-zero Z coordinate should be invertible");
613 let z_inv_squared = z_inv.square();
614 let z_inv_cubed = z_inv_squared.mul(&z_inv);
615
616 // Convert to affine coordinates: (x, y) = (X/Z², Y/Z³)
617 let x_affine = self.x.mul(&z_inv_squared);
618 let y_affine = self.y.mul(&z_inv_cubed);
619
620 Point {
621 is_identity: Choice::from(0),
622 x: x_affine,
623 y: y_affine,
624 }
625 }
626}