Module p384

Source
Expand description

NIST P-384 Elliptic Curve Primitives

This module implements the NIST P-384 elliptic curve operations in constant time. The curve equation is y² = x³ - 3x + b over the prime field F_p where:

  • p = 2^384 - 2^128 - 2^96 + 2^32 - 1 (NIST P-384 prime)
  • The curve order n = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC7634D81F4372DDF581A0DB248B0A77AECEC196ACCC52973

All operations are implemented to be constant-time to prevent timing attacks. The implementation uses:

  • Barrett reduction for field arithmetic
  • Jacobian projective coordinates for efficient point operations
  • Binary scalar multiplication with constant-time point selection

Structs§

FieldElement
P-384 field element representing values in F_p
Point
P-384 elliptic curve point in affine coordinates (x, y)
Scalar
P-384 scalar value for use in elliptic curve operations

Enums§

PointFormat
Format of a serialized elliptic curve point

Constants§

P384_FIELD_ELEMENT_SIZE
Size of a P-384 field element in bytes (48 bytes = 384 bits)
P384_KEM_SHARED_SECRET_KDF_OUTPUT_SIZE
Size of the KDF output for P-384 ECDH-KEM shared secret derivation
P384_POINT_COMPRESSED_SIZE
Size of a compressed P-384 point in bytes: format byte (0x02/0x03) + x-coordinate
P384_POINT_UNCOMPRESSED_SIZE
Size of an uncompressed P-384 point in bytes: format byte (0x04) + x-coordinate + y-coordinate
P384_SCALAR_SIZE
Size of a P-384 scalar in bytes (48 bytes = 384 bits)

Functions§

base_point_g
Get the standard base point G of the P-384 curve
generate_keypair
Generate a cryptographically secure ECDH keypair
kdf_hkdf_sha384_for_ecdh_kem
Key derivation function for ECDH shared secret using HKDF-SHA384
scalar_mult
General scalar multiplication: compute scalar * point
scalar_mult_base_g
Scalar multiplication with the base point: scalar * G