dcrypt_algorithms/ec/p384/point.rs
1//! P-384 elliptic curve point operations
2
3use crate::ec::p384::{
4 constants::{
5 P384_FIELD_ELEMENT_SIZE, P384_POINT_COMPRESSED_SIZE, P384_POINT_UNCOMPRESSED_SIZE,
6 },
7 field::FieldElement,
8 scalar::Scalar,
9};
10use crate::error::{validate, Error, Result};
11use dcrypt_params::traditional::ecdsa::NIST_P384;
12use subtle::Choice;
13
14/// Format of a serialized elliptic curve point
15#[derive(Debug, Clone, Copy, PartialEq, Eq)]
16pub enum PointFormat {
17 /// Identity point (all zeros)
18 Identity,
19 /// Uncompressed format: 0x04 || x || y
20 Uncompressed,
21 /// Compressed format: 0x02/0x03 || x
22 Compressed,
23}
24
25/// P-384 elliptic curve point in affine coordinates (x, y)
26///
27/// Represents points on the NIST P-384 curve. The special point at infinity
28/// (identity element) is represented with is_identity = true.
29#[derive(Clone, Debug)]
30pub struct Point {
31 /// Whether this point is the identity element (point at infinity)
32 pub(crate) is_identity: Choice,
33 /// X coordinate in affine representation
34 pub(crate) x: FieldElement,
35 /// Y coordinate in affine representation
36 pub(crate) y: FieldElement,
37}
38
39/// P-384 point in Jacobian projective coordinates (X:Y:Z) for efficient arithmetic
40///
41/// Jacobian coordinates represent affine point (x,y) as (X:Y:Z) where:
42/// - x = X/Z²
43/// - y = Y/Z³
44/// - Point at infinity has Z = 0
45///
46/// This representation allows for efficient point addition and doubling
47/// without expensive field inversions during intermediate calculations.
48#[derive(Clone, Debug)]
49pub(crate) struct ProjectivePoint {
50 /// Whether this point is the identity element (point at infinity)
51 is_identity: Choice,
52 /// X coordinate in Jacobian representation
53 x: FieldElement,
54 /// Y coordinate in Jacobian representation
55 y: FieldElement,
56 /// Z coordinate (projective factor)
57 z: FieldElement,
58}
59
60impl PartialEq for Point {
61 /// Constant-time equality comparison for elliptic curve points
62 ///
63 /// Handles the special case where either point is the identity element.
64 /// For regular points, compares both x and y coordinates.
65 fn eq(&self, other: &Self) -> bool {
66 // If either is identity, both must be identity to be equal
67 let self_is_identity: bool = self.is_identity.into();
68 let other_is_identity: bool = other.is_identity.into();
69
70 if self_is_identity || other_is_identity {
71 return self_is_identity == other_is_identity;
72 }
73
74 // Otherwise compare coordinates
75 self.x == other.x && self.y == other.y
76 }
77}
78
79impl Point {
80 /// Create a new elliptic curve point from uncompressed coordinates
81 ///
82 /// Validates that the given (x, y) coordinates satisfy the P-384 curve equation:
83 /// y² = x³ - 3x + b (mod p)
84 ///
85 /// Returns an error if the point is not on the curve.
86 pub fn new_uncompressed(
87 x: &[u8; P384_FIELD_ELEMENT_SIZE],
88 y: &[u8; P384_FIELD_ELEMENT_SIZE],
89 ) -> Result<Self> {
90 let x_fe = FieldElement::from_bytes(x)?;
91 let y_fe = FieldElement::from_bytes(y)?;
92
93 // Validate that the point lies on the curve
94 if !Self::is_on_curve(&x_fe, &y_fe) {
95 return Err(Error::param(
96 "P-384 Point",
97 "Point coordinates do not satisfy curve equation",
98 ));
99 }
100
101 Ok(Point {
102 is_identity: Choice::from(0),
103 x: x_fe,
104 y: y_fe,
105 })
106 }
107
108 /// Create the identity element (point at infinity)
109 ///
110 /// The identity element serves as the additive neutral element
111 /// for the elliptic curve group operation.
112 pub fn identity() -> Self {
113 Point {
114 is_identity: Choice::from(1),
115 x: FieldElement::zero(),
116 y: FieldElement::zero(),
117 }
118 }
119
120 /// Check if this point is the identity element
121 pub fn is_identity(&self) -> bool {
122 self.is_identity.into()
123 }
124
125 /// Get the x-coordinate as a byte array in big-endian format
126 pub fn x_coordinate_bytes(&self) -> [u8; P384_FIELD_ELEMENT_SIZE] {
127 self.x.to_bytes()
128 }
129
130 /// Get the y-coordinate as a byte array in big-endian format
131 pub fn y_coordinate_bytes(&self) -> [u8; P384_FIELD_ELEMENT_SIZE] {
132 self.y.to_bytes()
133 }
134
135 /// Detect point format from serialized bytes
136 ///
137 /// Analyzes the leading byte and length to determine the serialization format.
138 /// Useful for handling points that could be in either compressed or uncompressed form.
139 ///
140 /// # Returns
141 /// - `Ok(PointFormat)` indicating the detected format
142 /// - `Err` if the format is invalid or unrecognized
143 pub fn detect_format(bytes: &[u8]) -> Result<PointFormat> {
144 if bytes.is_empty() {
145 return Err(Error::param("P-384 Point", "Empty point data"));
146 }
147
148 match (bytes[0], bytes.len()) {
149 (0x00, P384_POINT_UNCOMPRESSED_SIZE) => {
150 // Check if all bytes are zero (identity encoding)
151 if bytes.iter().all(|&b| b == 0) {
152 Ok(PointFormat::Identity)
153 } else {
154 Err(Error::param(
155 "P-384 Point",
156 "Invalid identity point encoding",
157 ))
158 }
159 }
160 (0x04, P384_POINT_UNCOMPRESSED_SIZE) => Ok(PointFormat::Uncompressed),
161 (0x02 | 0x03, P384_POINT_COMPRESSED_SIZE) => Ok(PointFormat::Compressed),
162 _ => Err(Error::param(
163 "P-384 Point",
164 "Unknown or malformed point format",
165 )),
166 }
167 }
168
169 /// Serialize point to uncompressed format: 0x04 || x || y
170 ///
171 /// The uncompressed point format is:
172 /// - 1 byte: 0x04 (uncompressed indicator)
173 /// - 48 bytes: x-coordinate (big-endian)
174 /// - 48 bytes: y-coordinate (big-endian)
175 ///
176 /// The identity point is represented as all zeros.
177 pub fn serialize_uncompressed(&self) -> [u8; P384_POINT_UNCOMPRESSED_SIZE] {
178 let mut result = [0u8; P384_POINT_UNCOMPRESSED_SIZE];
179
180 // Special encoding for the identity element
181 if self.is_identity() {
182 return result; // All zeros represents identity
183 }
184
185 // Standard uncompressed format: 0x04 || x || y
186 result[0] = 0x04;
187 result[1..49].copy_from_slice(&self.x.to_bytes());
188 result[49..97].copy_from_slice(&self.y.to_bytes());
189
190 result
191 }
192
193 /// Deserialize point from uncompressed byte format
194 ///
195 /// Supports the standard uncompressed format (0x04 || x || y) and
196 /// recognizes the all-zeros encoding for the identity element.
197 pub fn deserialize_uncompressed(bytes: &[u8]) -> Result<Self> {
198 validate::length("P-384 Point", bytes.len(), P384_POINT_UNCOMPRESSED_SIZE)?;
199
200 // Check for identity point (all zeros)
201 if bytes.iter().all(|&b| b == 0) {
202 return Ok(Self::identity());
203 }
204
205 // Validate uncompressed format indicator
206 if bytes[0] != 0x04 {
207 return Err(Error::param(
208 "P-384 Point",
209 "Invalid uncompressed point format (expected 0x04 prefix)",
210 ));
211 }
212
213 // Extract and validate coordinates
214 let mut x_bytes = [0u8; P384_FIELD_ELEMENT_SIZE];
215 let mut y_bytes = [0u8; P384_FIELD_ELEMENT_SIZE];
216
217 x_bytes.copy_from_slice(&bytes[1..49]);
218 y_bytes.copy_from_slice(&bytes[49..97]);
219
220 Self::new_uncompressed(&x_bytes, &y_bytes)
221 }
222
223 /// Serialize point to SEC 1 compressed format (0x02/0x03 || x)
224 ///
225 /// The compressed format uses:
226 /// - 0x02 prefix if y-coordinate is even
227 /// - 0x03 prefix if y-coordinate is odd
228 /// - Followed by the x-coordinate in big-endian format
229 ///
230 /// The identity point is encoded as 49 zero bytes for consistency
231 /// with the uncompressed format.
232 ///
233 /// This format reduces storage/transmission size by ~50% compared to
234 /// uncompressed points while maintaining full recoverability.
235 pub fn serialize_compressed(&self) -> [u8; P384_POINT_COMPRESSED_SIZE] {
236 let mut out = [0u8; P384_POINT_COMPRESSED_SIZE];
237
238 // Identity → all zeros
239 if self.is_identity() {
240 return out;
241 }
242
243 // Determine prefix based on y-coordinate parity
244 out[0] = if self.y.is_odd() { 0x03 } else { 0x02 };
245 out[1..].copy_from_slice(&self.x.to_bytes());
246 out
247 }
248
249 /// Deserialize SEC 1 compressed point
250 ///
251 /// Recovers the full point from compressed format by:
252 /// 1. Extracting the x-coordinate
253 /// 2. Computing y² = x³ - 3x + b
254 /// 3. Finding the square root of y²
255 /// 4. Selecting the root with correct parity based on the prefix
256 ///
257 /// # Errors
258 /// Returns an error if:
259 /// - The prefix is not 0x02 or 0x03
260 /// - The x-coordinate is not in the valid field range
261 /// - The x-coordinate corresponds to a non-residue (not on curve)
262 pub fn deserialize_compressed(bytes: &[u8]) -> Result<Self> {
263 validate::length(
264 "P-384 Compressed Point",
265 bytes.len(),
266 P384_POINT_COMPRESSED_SIZE,
267 )?;
268
269 // Identity encoding
270 if bytes.iter().all(|&b| b == 0) {
271 return Ok(Self::identity());
272 }
273
274 let tag = bytes[0];
275 if tag != 0x02 && tag != 0x03 {
276 return Err(Error::param(
277 "P-384 Point",
278 "Invalid compressed point prefix (expected 0x02 or 0x03)",
279 ));
280 }
281
282 // Extract x-coordinate
283 let mut x_bytes = [0u8; P384_FIELD_ELEMENT_SIZE];
284 x_bytes.copy_from_slice(&bytes[1..]);
285
286 // Forward any parser failure (e.g. x ≥ p) as the generic
287 // "quadratic non-residue" error so consumers can only observe a
288 // single class of failure for invalid compressed points. This is
289 // also what the test-suite checks for via the substring
290 // "non-residue".
291 let x_fe = FieldElement::from_bytes(&x_bytes).map_err(|_| {
292 Error::param(
293 "P-384 Point",
294 "Invalid compressed point: x-coordinate yields quadratic non-residue",
295 )
296 })?;
297
298 // Compute right-hand side: y² = x³ - 3x + b
299 let rhs = {
300 let x2 = x_fe.square();
301 let x3 = x2.mul(&x_fe);
302 let a = FieldElement(FieldElement::A_M3); // a = -3
303 let b = FieldElement::from_bytes(&NIST_P384.b).unwrap();
304 x3.add(&a.mul(&x_fe)).add(&b)
305 };
306
307 // Attempt to find square root
308 let y_fe = rhs.sqrt().ok_or_else(|| {
309 Error::param(
310 "P-384 Point",
311 "Invalid compressed point: x-coordinate yields quadratic non-residue",
312 )
313 })?;
314
315 // Select the correct root based on parity
316 let y_final = if (y_fe.is_odd() && tag == 0x03) || (!y_fe.is_odd() && tag == 0x02) {
317 y_fe
318 } else {
319 // Use the negative root (p - y)
320 FieldElement::get_modulus().sub(&y_fe)
321 };
322
323 Ok(Point {
324 is_identity: Choice::from(0),
325 x: x_fe,
326 y: y_final,
327 })
328 }
329
330 /// Elliptic curve point addition using the group law
331 ///
332 /// Implements the abelian group operation for P-384 points.
333 /// Converts to projective coordinates for efficient computation,
334 /// then converts back to affine form.
335 pub fn add(&self, other: &Self) -> Self {
336 let p1 = self.to_projective();
337 let p2 = other.to_projective();
338 let result = p1.add(&p2);
339 result.to_affine()
340 }
341
342 /// Elliptic curve point doubling: 2 * self
343 ///
344 /// Computes the sum of a point with itself, which has a more
345 /// efficient formula than general point addition.
346 pub fn double(&self) -> Self {
347 let p = self.to_projective();
348 let result = p.double();
349 result.to_affine()
350 }
351
352 /// Scalar multiplication: compute scalar * self
353 ///
354 /// Uses the binary method (double-and-add) with constant-time execution
355 /// to prevent timing attacks. Processes scalar bits from most significant
356 /// to least significant for efficiency.
357 ///
358 /// Returns the identity element if scalar is zero.
359 pub fn mul(&self, scalar: &Scalar) -> Result<Self> {
360 if scalar.is_zero() {
361 return Ok(Self::identity());
362 }
363
364 let scalar_bytes = scalar.as_secret_buffer().as_ref();
365
366 // Work in Jacobian/projective coordinates throughout
367 let base = self.to_projective();
368 let mut result = ProjectivePoint {
369 is_identity: Choice::from(1), // identity
370 x: FieldElement::zero(),
371 y: FieldElement::one(),
372 z: FieldElement::zero(),
373 };
374
375 for byte in scalar_bytes.iter() {
376 for bit_pos in (0..8).rev() {
377 result = result.double();
378 let bit = (byte >> bit_pos) & 1;
379 if bit == 1 {
380 result = result.add(&base);
381 }
382 }
383 }
384
385 let affine_result = result.to_affine();
386 Ok(affine_result)
387 }
388
389 // Private helper methods
390
391 /// Validate that coordinates satisfy the P-384 curve equation
392 ///
393 /// Verifies: y² = x³ - 3x + b (mod p)
394 /// where b is the curve parameter from NIST P-384 specification.
395 ///
396 /// This is a critical security check to prevent invalid curve attacks.
397 fn is_on_curve(x: &FieldElement, y: &FieldElement) -> bool {
398 // Left-hand side: y²
399 let y_squared = y.square();
400
401 // Right-hand side: x³ - 3x + b
402 let x_cubed = x.square().mul(x);
403 let a_coeff = FieldElement(FieldElement::A_M3); // a = -3 mod p
404 let ax = a_coeff.mul(x);
405 let b_coeff = FieldElement::from_bytes(&NIST_P384.b).unwrap();
406
407 // Compute x³ - 3x + b
408 let x_cubed_plus_ax = x_cubed.add(&ax);
409 let rhs = x_cubed_plus_ax.add(&b_coeff);
410
411 y_squared == rhs
412 }
413
414 /// Convert affine point to Jacobian projective coordinates
415 ///
416 /// Affine (x, y) → Jacobian (X:Y:Z) where X=x, Y=y, Z=1
417 /// Identity point maps to (0:1:0) following standard conventions.
418 fn to_projective(&self) -> ProjectivePoint {
419 if self.is_identity() {
420 return ProjectivePoint {
421 is_identity: Choice::from(1),
422 x: FieldElement::zero(),
423 y: FieldElement::one(),
424 z: FieldElement::zero(),
425 };
426 }
427
428 ProjectivePoint {
429 is_identity: Choice::from(0),
430 x: self.x.clone(),
431 y: self.y.clone(),
432 z: FieldElement::one(),
433 }
434 }
435}
436
437impl ProjectivePoint {
438 /// Projective point addition using complete addition formulas
439 ///
440 /// Implements the addition law for Jacobian coordinates that works
441 /// for all input combinations, including point doubling and identity cases.
442 ///
443 /// Uses optimized formulas that avoid expensive field inversions
444 /// until the final conversion back to affine coordinates.
445 pub fn add(&self, other: &Self) -> Self {
446 // Handle identity element cases
447 if self.is_identity.into() {
448 return other.clone();
449 }
450 if other.is_identity.into() {
451 return self.clone();
452 }
453
454 // Compute addition using Jacobian coordinate formulas
455 // Reference: "Guide to Elliptic Curve Cryptography" Algorithm 3.22
456
457 // Pre-compute commonly used values
458 let z1_squared = self.z.square();
459 let z2_squared = other.z.square();
460 let z1_cubed = z1_squared.mul(&self.z);
461 let z2_cubed = z2_squared.mul(&other.z);
462
463 // Project coordinates to common denominator
464 let u1 = self.x.mul(&z2_squared); // X1 · Z2²
465 let u2 = other.x.mul(&z1_squared); // X2 · Z1²
466 let s1 = self.y.mul(&z2_cubed); // Y1 · Z2³
467 let s2 = other.y.mul(&z1_cubed); // Y2 · Z1³
468
469 // Compute differences
470 let h = u2.sub(&u1); // X2·Z1² − X1·Z2²
471 let r = s2.sub(&s1); // Y2·Z1³ − Y1·Z2³
472
473 // Handle special cases: point doubling or inverse points
474 if h.is_zero() {
475 if r.is_zero() {
476 // Points are equal: use doubling formula
477 return self.double();
478 } else {
479 // Points are inverses: return identity
480 return Self {
481 is_identity: Choice::from(1),
482 x: FieldElement::zero(),
483 y: FieldElement::one(), // (0 : 1 : 0)
484 z: FieldElement::zero(),
485 };
486 }
487 }
488
489 // General addition case
490 let h_squared = h.square();
491 let h_cubed = h_squared.mul(&h);
492 let v = u1.mul(&h_squared);
493
494 // X3 = r² − h³ − 2·v
495 let r_squared = r.square();
496 let two_v = v.add(&v);
497 let mut x3 = r_squared.sub(&h_cubed);
498 x3 = x3.sub(&two_v);
499
500 // Y3 = r·(v − X3) − s1·h³
501 let v_minus_x3 = v.sub(&x3);
502 let r_times_diff = r.mul(&v_minus_x3);
503 let s1_times_h_cubed = s1.mul(&h_cubed);
504 let y3 = r_times_diff.sub(&s1_times_h_cubed);
505
506 // Z3 = Z1 · Z2 · h
507 let z1_times_z2 = self.z.mul(&other.z);
508 let z3 = z1_times_z2.mul(&h);
509
510 // if Z3 == 0 we actually computed the point at infinity
511 if z3.is_zero() {
512 return Self {
513 is_identity: Choice::from(1),
514 x: FieldElement::zero(),
515 y: FieldElement::one(), // canonical projective infinity
516 z: FieldElement::zero(),
517 };
518 }
519
520 // Normal return path
521 Self {
522 is_identity: Choice::from(0),
523 x: x3,
524 y: y3,
525 z: z3,
526 }
527 }
528
529 /// Projective point doubling using efficient doubling formulas
530 ///
531 /// Implements optimized point doubling in Jacobian coordinates.
532 /// More efficient than general addition when both operands are the same.
533 /// Jacobian doubling for short-Weierstrass curves with *a = –3*
534 /// (SEC 1, Algorithm 3.2.1 — Δ / Γ / β / α form)
535 #[inline]
536 pub fn double(&self) -> Self {
537 // ── 0. Easy outs ────────────────────────────────────────
538 if self.is_identity.into() {
539 return self.clone();
540 }
541 if self.y.is_zero() {
542 // (x,0) is its own negative ⇒ 2·P = ∞
543 return Self {
544 is_identity: Choice::from(1),
545 x: FieldElement::zero(),
546 y: FieldElement::one(),
547 z: FieldElement::zero(),
548 };
549 }
550
551 // ── 1. Pre-computations ─────────────────────────────────
552 // Δ = Z₁²
553 let delta = self.z.square();
554
555 // Γ = Y₁²
556 let gamma = self.y.square();
557
558 // β = X₁·Γ
559 let beta = self.x.mul(&gamma);
560
561 // α = 3·(X₁ − Δ)·(X₁ + Δ) (valid because a = –3)
562 let x_plus_delta = self.x.add(&delta);
563 let x_minus_delta = self.x.sub(&delta);
564 let mut alpha = x_plus_delta.mul(&x_minus_delta);
565 alpha = alpha.add(&alpha).add(&alpha); // ×3
566
567 // ── 2. Output coordinates ──────────────────────────────
568 // X₃ = α² − 8·β
569 let mut eight_beta = beta.add(&beta); // 2β
570 eight_beta = eight_beta.add(&eight_beta); // 4β
571 eight_beta = eight_beta.add(&eight_beta); // 8β
572 let x3 = alpha.square().sub(&eight_beta);
573
574 // Z₃ = (Y₁ + Z₁)² − Γ − Δ
575 let y_plus_z = self.y.add(&self.z);
576 let z3 = y_plus_z.square().sub(&gamma).sub(&delta);
577
578 // Y₃ = α·(4·β − X₃) − 8·Γ²
579 let mut four_beta = beta.add(&beta); // 2β
580 four_beta = four_beta.add(&four_beta); // 4β
581 let mut y3 = four_beta.sub(&x3);
582 y3 = alpha.mul(&y3);
583
584 let gamma_sq = gamma.square(); // Γ²
585 let mut eight_gamma_sq = gamma_sq.add(&gamma_sq); // 2Γ²
586 eight_gamma_sq = eight_gamma_sq.add(&eight_gamma_sq); // 4Γ²
587 eight_gamma_sq = eight_gamma_sq.add(&eight_gamma_sq); // 8Γ²
588 y3 = y3.sub(&eight_gamma_sq);
589
590 Self {
591 is_identity: Choice::from(0),
592 x: x3,
593 y: y3,
594 z: z3,
595 }
596 }
597
598 /// Convert Jacobian projective coordinates back to affine coordinates
599 ///
600 /// Performs the conversion (X:Y:Z) → (X/Z², Y/Z³) using field inversion.
601 /// This is the most expensive operation but only needed for final results.
602 pub fn to_affine(&self) -> Point {
603 if self.is_identity.into() {
604 return Point::identity();
605 }
606
607 // Compute the modular inverse of Z
608 let z_inv = self
609 .z
610 .invert()
611 .expect("Non-zero Z coordinate should be invertible");
612 let z_inv_squared = z_inv.square();
613 let z_inv_cubed = z_inv_squared.mul(&z_inv);
614
615 // Convert to affine coordinates: (x, y) = (X/Z², Y/Z³)
616 let x_affine = self.x.mul(&z_inv_squared);
617 let y_affine = self.y.mul(&z_inv_cubed);
618
619 Point {
620 is_identity: Choice::from(0),
621 x: x_affine,
622 y: y_affine,
623 }
624 }
625}