dbsp/operator/dynamic/aggregate/
average.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
use super::{AggOutputFunc, IncAggregateLinearFactories};
use crate::{
    algebra::{
        AddAssignByRef, AddByRef, HasZero, IndexedZSet, IndexedZSetReader, MulByRef, NegByRef,
        OrdIndexedZSet,
    },
    declare_trait_object,
    dynamic::{ClonableTrait, DataTrait, Erase, Factory, Weight, WeightTrait, WithFactory},
    trace::Deserializable,
    Circuit, DBData, DBWeight, DynZWeight, Stream, Timestamp, ZWeight,
};
use rkyv::{Archive, Deserialize, Serialize};
use size_of::SizeOf;
use std::{
    fmt::Debug,
    hash::Hash,
    mem::take,
    ops::{Div, Neg},
};

pub struct AvgFactories<Z, A, W, T>
where
    Z: IndexedZSetReader,
    A: DataTrait + ?Sized,
    W: DataTrait + ?Sized,
    T: Timestamp,
{
    aggregate_factories:
        IncAggregateLinearFactories<Z, DynAverage<W, DynZWeight>, OrdIndexedZSet<Z::Key, A>, T>,
    weight_factory: &'static dyn Factory<W>,
}

impl<Z, A, W, T> AvgFactories<Z, A, W, T>
where
    Z: IndexedZSet,
    A: DataTrait + ?Sized,
    W: WeightTrait + ?Sized,
    DynAverage<W, DynZWeight>: WeightTrait,
    T: Timestamp,
{
    pub fn new<KType, AType, WType>() -> Self
    where
        KType: DBData + Erase<Z::Key>,
        <KType as Deserializable>::ArchivedDeser: Ord,
        WType: DBWeight + Erase<W>,
        AType: DBWeight + Erase<A>,
        WType: From<ZWeight> + Div<Output = WType>,
    {
        Self {
            aggregate_factories: IncAggregateLinearFactories::new::<
                KType,
                Avg<WType, ZWeight>,
                AType,
            >(),
            weight_factory: WithFactory::<WType>::FACTORY,
        }
    }
}

/// Representation of a partially computed average aggregate as a `(sum, count)`
/// tuple.
///
/// This struct represents the result of the linear part of the average
/// aggregate as a `(sum, count)` tuple (see [`Stream::dyn_average`]).  The
/// actual average value can be obtained by dividing `sum` by `count`.  `Avg`
/// forms a commutative monoid with point-wise plus operation `(sum1, count1) +
/// (sum2, count2) = (sum1 + sum2, count1 + count2)`.
#[derive(
    Debug,
    Default,
    Clone,
    Eq,
    Hash,
    PartialEq,
    Ord,
    PartialOrd,
    SizeOf,
    Archive,
    Serialize,
    Deserialize,
)]
#[archive_attr(derive(Ord, Eq, PartialEq, PartialOrd))]
#[archive(bound(archive = "<T as Archive>::Archived: Ord, <R as Archive>::Archived: Ord"))]
#[archive(compare(PartialEq, PartialOrd))]
pub struct Avg<T, R> {
    sum: T,
    count: R,
}

impl<T, R> Avg<T, R> {
    /// Create a new `Avg` object with the given `sum` and `count`.
    pub const fn new(sum: T, count: R) -> Self {
        Self { sum, count }
    }

    /// Returns the `sum` component of the `(sum, count)` tuple.
    pub fn sum(&self) -> T
    where
        T: Clone,
    {
        self.sum.clone()
    }

    /// Returns the `count` component of the `(sum, count)` tuple.
    pub fn count(&self) -> R
    where
        R: Clone,
    {
        self.count.clone()
    }

    /// Returns `sum / count` or `None` if `count` is zero.
    pub fn compute_avg(&self) -> Option<T>
    where
        R: Clone + HasZero,
        T: From<R> + Div<Output = T> + Clone,
    {
        if self.count.is_zero() {
            None
        } else {
            Some(self.sum.clone() / T::from(self.count.clone()))
        }
    }
}

impl<T, R> HasZero for Avg<T, R>
where
    T: HasZero,
    R: HasZero,
{
    fn is_zero(&self) -> bool {
        self.sum.is_zero() && self.count.is_zero()
    }

    fn zero() -> Self {
        Self::new(T::zero(), R::zero())
    }
}

impl<T, R> AddByRef for Avg<T, R>
where
    T: AddByRef,
    R: AddByRef,
{
    fn add_by_ref(&self, other: &Self) -> Self {
        Self::new(
            self.sum.add_by_ref(&other.sum),
            self.count.add_by_ref(&other.count),
        )
    }
}

impl<T, R> AddAssignByRef for Avg<T, R>
where
    T: AddAssignByRef,
    R: AddAssignByRef,
{
    fn add_assign_by_ref(&mut self, rhs: &Self) {
        self.sum.add_assign_by_ref(&rhs.sum);
        self.count.add_assign_by_ref(&rhs.count);
    }
}

impl<T, R> Neg for Avg<T, R>
where
    T: Neg<Output = T>,
    R: Neg<Output = R>,
{
    type Output = Self;

    fn neg(self) -> Self {
        Self::new(self.sum.neg(), self.count.neg())
    }
}

impl<T, R> NegByRef for Avg<T, R>
where
    T: NegByRef,
    R: NegByRef,
{
    fn neg_by_ref(&self) -> Self {
        Self::new(self.sum.neg_by_ref(), self.count.neg_by_ref())
    }
}

impl<T, R> MulByRef<R> for Avg<T, R>
where
    T: MulByRef<Output = T>,
    T: From<R>,
    R: MulByRef<Output = R> + Clone,
{
    type Output = Avg<T, R>;

    fn mul_by_ref(&self, rhs: &R) -> Avg<T, R> {
        Self::new(
            self.sum.mul_by_ref(&T::from(rhs.clone())),
            self.count.mul_by_ref(rhs),
        )
    }
}

pub trait Average<T: DataTrait + ?Sized, R: WeightTrait + ?Sized>: Weight {
    fn sum(&self) -> &T;
    fn count(&self) -> &R;
    fn split_mut(&mut self) -> (&mut T, &mut R);

    #[allow(clippy::wrong_self_convention)]
    fn from_refs(&mut self, sum: &T, count: &R);

    #[allow(clippy::wrong_self_convention)]
    fn from_vals(&mut self, sum: &mut T, count: &mut R);
    fn compute_avg(&self, avg: &mut T);
}

impl<T1Type, T2Type, T1, T2> Average<T1, T2> for Avg<T1Type, T2Type>
where
    T1Type: DBWeight + Erase<T1>,
    T2Type: DBWeight + Erase<T2>,
    T1Type: From<T2Type> + Div<Output = T1Type>,
    T1: DataTrait + ?Sized,
    T2: WeightTrait + ?Sized,
{
    fn sum(&self) -> &T1 {
        self.sum.erase()
    }

    fn count(&self) -> &T2 {
        self.count.erase()
    }

    fn split_mut(&mut self) -> (&mut T1, &mut T2) {
        (self.sum.erase_mut(), self.count.erase_mut())
    }

    fn from_refs(&mut self, sum: &T1, count: &T2) {
        let sum: &T1Type = unsafe { sum.downcast::<T1Type>() };
        let count: &T2Type = unsafe { count.downcast::<T2Type>() };

        self.sum = sum.clone();
        self.count = count.clone();
    }

    fn from_vals(&mut self, sum: &mut T1, count: &mut T2) {
        let sum: &mut T1Type = unsafe { sum.downcast_mut::<T1Type>() };
        let count: &mut T2Type = unsafe { count.downcast_mut::<T2Type>() };

        self.sum = take(sum);
        self.count = take(count);
    }

    fn compute_avg(&self, avg: &mut T1) {
        let avg: &mut T1Type = unsafe { avg.downcast_mut::<T1Type>() };

        *avg = Avg::compute_avg(self).unwrap();
    }
}

declare_trait_object!(DynAverage<T, R> = dyn Average<T, R>
where
    T: DataTrait + ?Sized,
    R: WeightTrait + ?Sized
);

impl<C, Z> Stream<C, Z>
where
    C: Circuit,
    Z: Clone + 'static,
{
    /// See [`Stream::average`].
    #[track_caller]
    pub fn dyn_average<A, W>(
        &self,
        factories: &AvgFactories<Z, A, W, C::Time>,
        f: Box<dyn Fn(&Z::Key, &Z::Val, &DynZWeight, &mut W)>,
        out_func: Box<dyn AggOutputFunc<W, A>>,
    ) -> Stream<C, OrdIndexedZSet<Z::Key, A>>
    where
        A: DataTrait + ?Sized,
        W: DataTrait + ?Sized,
        Z: IndexedZSet,
    {
        let weight_factory = factories.weight_factory;
        self.dyn_aggregate_linear_generic(
            &factories.aggregate_factories,
            Box::new(
                move |k: &Z::Key, v: &Z::Val, w: &Z::R, avg: &mut DynAverage<W, Z::R>| {
                    let (sum, count) = avg.split_mut();
                    w.clone_to(count);
                    f(k, v, w, sum);
                },
            ),
            Box::new(move |avg, out| {
                weight_factory.with(&mut |w| {
                    avg.compute_avg(w);
                    out_func(w, out);
                })
            }),
        )

        //f: &dyn Fn(&Z::Key, &Z::Val, &Z::R, MutRef<A>),

        // We're the only possible consumer of the aggregated stream so we can
        // use an owned consumer to skip any cloning
        //let average = aggregate.apply_owned_named("ApplyAverage",
        // apply_average);

        /*let average = aggregate.dyn_map_index(
            &factories.output_factories,
            Box::new(|(k, avg), key_val| {
                let (key, val) = key_val.split_mut();
                k.clone_to(key);
                avg.compute_avg(val);
            }),
        );*/

        // Note: Currently `.aggregate_linear()` is always sharded, but we just
        // do this check so that we don't get any unpleasant surprises
        // if that ever changes average.mark_sharded_if(&aggregate);

        //average
    }
}

// /// The gist of what we're doing here is this:
// ///
// /// - We receive an owned `OrdIndexedZSet` so we can do whatever we want with
// it /// - `OrdIndexedZSet` consists of four discrete vectors of values, a
// `Vec<K>` ///   of keys, a `Vec<usize>` of value offsets, a `Vec<Avg<A>>` of
// average ///   aggregates and a `Vec<isize>` of differences
// /// - Of these only one vector needs to be changed in *any* way: The
// ///   `Vec<Avg<A>>` needs to be transformed into a `Vec<A>`
// /// - So following this fact, the other three vectors never need to be
// touched /// - Ergo, we simply reuse those three untouched vectors in our
// output ///   `OrdIndexedZSet`, requiring us to do the minimum of work:
// dividing all of ///   our sums by all of our counts within the `Vec<Avg<A>>`
// to produce our ///   output `Vec<A>`
// ///
// /// Note that unfortunately we can't reuse the `Vec<Avg<A>>`'s allocation
// here /// since an `Avg<A>` will never have the same size as an `A` due to
// `Avg<A>` /// containing an extra `isize` field
// fn apply_average<K, A, R, W>(aggregate: OrdIndexedZSet<K, Avg<A, R>, W>) ->
// OrdIndexedZSet<K, A, W> where
//     K: Ord,
//     A: DBData + From<R> + Div<Output = A>,
//     R: DBData + ZRingValue,
//     W: DBWeight,
// {
//     // Break the given `OrdIndexedZSet` into its components
//     let OrderedLayer {
//         keys,
//         offs,
//         vals,
//         lower_bound,
//     } = aggregate.layer;
//     let (aggregates, diffs, lower_bound_avg) = vals.into_parts();

//     // Average out the aggregated values
//     // TODO: If we stored `Avg<A>` as two columns (one of `sum: A` and one of
//     // `count: isize`) we could even reuse the `sum` vec by doing the
// division in     // place (and we even could do it with simd depending on
// `A`'s type)     let mut averages = Vec::with_capacity(aggregates.len());
//     for avg in aggregates {
//         // TODO: This can technically use an unchecked division (or an
//         // `assume(count != 0)` call since `.div_unchecked()` is unstable)
// since `count`         // should never be zero since zeroed elements are
// removed from zsets         debug_assert!(!avg.count().is_zero());

//         // Safety: We allocated the correct capacity for `aggregate_values`
//         unsafe { averages.push_unchecked(avg.compute_avg().unwrap()) };
//     }

//     // Safety: `averages.len() == diffs.len()`
//     let averages = unsafe { ColumnLayer::from_parts(averages, diffs,
// lower_bound_avg) };

//     // Create a new `OrdIndexedZSet` from our components, notably this
// doesn't touch     // `keys`, `offs` or `diffs` which means we don't allocate
// new vectors for them     // or even touch their memory
//     OrdIndexedZSet {
//         // Safety: `keys.len() + 1 == offs.len()`
//         layer: unsafe { OrderedLayer::from_parts(keys, offs, averages,
// lower_bound) },     }
// }

#[cfg(test)]
mod tests {
    use rkyv::Deserialize;

    use crate::operator::Avg;

    // #[test]
    // fn apply_average_smoke() {
    //     let input = indexed_zset! {
    //         0 => { Avg::new(1000, 10) => 1 },
    //         1 => { Avg::new(1, 1) => -12 },
    //         1000 => { Avg::new(200, 20) => 544 },
    //     };
    //     let expected = indexed_zset! {
    //         0 => { 100 => 1 },
    //         1 => { 1 => -12 },
    //         1000 => { 10 => 544 },
    //     };
    //
    //     let output = apply_average(input);
    //     assert_eq!(output, expected);
    // }

    #[test]
    fn avg_decode_encode() {
        type Type = Avg<u64, i64>;
        for input in [
            Avg::new(0, 0),
            Avg::new(u64::MAX, i64::MAX),
            Avg::new(u64::MIN, i64::MIN),
        ] {
            let input: Type = input;
            let encoded = rkyv::to_bytes::<_, 256>(&input).unwrap();
            let archived = unsafe { rkyv::archived_root::<Type>(&encoded[..]) };
            let decoded: Type = archived.deserialize(&mut rkyv::Infallible).unwrap();
            assert_eq!(decoded, input);
        }
    }
}