Skip to main content

Module benchmarks

Module benchmarks 

Source
Expand description

Benchmark suite definitions for ML evaluation.

Provides standardized benchmark datasets for:

  • Anomaly detection (AnomalyBench-1K)
  • Fraud detection (FraudDetect-10K)
  • Data quality detection (DataQuality-100K)
  • Entity matching (EntityMatch-5K)

Each benchmark defines:

  • Dataset size and composition
  • Ground truth labels
  • Evaluation metrics
  • Expected baseline performance

Structs§

BaselineResult
Expected baseline result for a benchmark.
BenchmarkBuilder
Builder for creating benchmark suites.
BenchmarkSuite
A benchmark suite definition.
CostMatrix
Cost matrix for cost-sensitive evaluation.
DatasetSpec
Dataset specification.
EvaluationSpec
Evaluation specification.
FeatureSet
Feature set for the benchmark.
LeaderboardEntry
Leaderboard entry for benchmark results.
SplitRatios
Train/validation/test split ratios.

Enums§

BaselineModelType
Types of baseline models.
BenchmarkTaskType
Types of benchmark tasks.
MetricType
Types of evaluation metrics.

Functions§

all_benchmarks
Get all available benchmark suites.
anomaly_bench_1k
AnomalyBench-1K: 1000 transactions with known anomalies.
data_quality_100k
DataQuality-100K: 100K records for data quality detection.
entity_match_5k
EntityMatch-5K: 5K records for entity matching.
fraud_detect_10k
FraudDetect-10K: 10K transactions for fraud detection.
get_benchmark
Get a benchmark by ID.
graph_fraud_10k
GraphFraud-10K: 10K transactions with network structure.