Expand description
Benchmark suite definitions for ML evaluation.
Provides standardized benchmark datasets for:
- Anomaly detection (AnomalyBench-1K)
- Fraud detection (FraudDetect-10K)
- Data quality detection (DataQuality-100K)
- Entity matching (EntityMatch-5K)
Each benchmark defines:
- Dataset size and composition
- Ground truth labels
- Evaluation metrics
- Expected baseline performance
Structs§
- Baseline
Result - Expected baseline result for a benchmark.
- Benchmark
Builder - Builder for creating benchmark suites.
- Benchmark
Suite - A benchmark suite definition.
- Cost
Matrix - Cost matrix for cost-sensitive evaluation.
- Dataset
Spec - Dataset specification.
- Evaluation
Spec - Evaluation specification.
- Feature
Set - Feature set for the benchmark.
- Leaderboard
Entry - Leaderboard entry for benchmark results.
- Split
Ratios - Train/validation/test split ratios.
Enums§
- Baseline
Model Type - Types of baseline models.
- Benchmark
Task Type - Types of benchmark tasks.
- Metric
Type - Types of evaluation metrics.
Functions§
- all_
benchmarks - Get all available benchmark suites.
- anomaly_
bench_ 1k - AnomalyBench-1K: 1000 transactions with known anomalies.
- data_
quality_ 100k - DataQuality-100K: 100K records for data quality detection.
- entity_
match_ 5k - EntityMatch-5K: 5K records for entity matching.
- fraud_
detect_ 10k - FraudDetect-10K: 10K transactions for fraud detection.
- get_
benchmark - Get a benchmark by ID.
- graph_
fraud_ 10k - GraphFraud-10K: 10K transactions with network structure.