Skip to main content

datasynth_core/distributions/
pareto.rs

1//! Pareto distribution for heavy-tailed data generation.
2//!
3//! The Pareto distribution is useful for modeling phenomena that follow
4//! the "80/20 rule" - e.g., 20% of vendors accounting for 80% of spend,
5//! or capital expenditure patterns where most transactions are small
6//! but a few are very large.
7
8use rand::prelude::*;
9use rand_chacha::ChaCha8Rng;
10use rand_distr::{Distribution, Pareto};
11use rust_decimal::Decimal;
12use serde::{Deserialize, Serialize};
13
14/// Configuration for Pareto distribution.
15#[derive(Debug, Clone, Serialize, Deserialize)]
16pub struct ParetoConfig {
17    /// Shape parameter (alpha) - controls tail heaviness.
18    /// Lower values = heavier tail (more extreme values).
19    /// Typical values: 1.5-3.0 for financial data.
20    pub alpha: f64,
21    /// Scale parameter (x_min) - minimum value.
22    /// All samples will be >= x_min.
23    pub x_min: f64,
24    /// Maximum value (clamps output).
25    #[serde(default)]
26    pub max_value: Option<f64>,
27    /// Number of decimal places for rounding.
28    #[serde(default = "default_decimal_places")]
29    pub decimal_places: u8,
30}
31
32fn default_decimal_places() -> u8 {
33    2
34}
35
36impl Default for ParetoConfig {
37    fn default() -> Self {
38        Self {
39            alpha: 2.0,   // Moderate tail heaviness
40            x_min: 100.0, // Minimum $100
41            max_value: None,
42            decimal_places: 2,
43        }
44    }
45}
46
47impl ParetoConfig {
48    /// Create a new Pareto configuration.
49    pub fn new(alpha: f64, x_min: f64) -> Self {
50        Self {
51            alpha,
52            x_min,
53            ..Default::default()
54        }
55    }
56
57    /// Create a configuration for capital expenditures (heavy tail).
58    pub fn capital_expenditure() -> Self {
59        Self {
60            alpha: 1.5,      // Heavy tail
61            x_min: 10_000.0, // Minimum $10,000
62            max_value: Some(100_000_000.0),
63            decimal_places: 2,
64        }
65    }
66
67    /// Create a configuration for maintenance costs.
68    pub fn maintenance_costs() -> Self {
69        Self {
70            alpha: 2.5,   // Moderate tail
71            x_min: 500.0, // Minimum $500
72            max_value: Some(500_000.0),
73            decimal_places: 2,
74        }
75    }
76
77    /// Create a configuration for vendor spend distribution.
78    pub fn vendor_spend() -> Self {
79        Self {
80            alpha: 1.8, // 80/20 rule approximation
81            x_min: 1_000.0,
82            max_value: Some(10_000_000.0),
83            decimal_places: 2,
84        }
85    }
86
87    /// Validate the configuration.
88    pub fn validate(&self) -> Result<(), String> {
89        if self.alpha <= 0.0 {
90            return Err("alpha must be positive".to_string());
91        }
92        if self.x_min <= 0.0 {
93            return Err("x_min must be positive".to_string());
94        }
95        if let Some(max) = self.max_value {
96            if max <= self.x_min {
97                return Err("max_value must be greater than x_min".to_string());
98            }
99        }
100        Ok(())
101    }
102
103    /// Get the expected value (mean) of the distribution.
104    /// Only defined for alpha > 1.
105    pub fn expected_value(&self) -> Option<f64> {
106        if self.alpha > 1.0 {
107            Some(self.alpha * self.x_min / (self.alpha - 1.0))
108        } else {
109            None // Infinite for alpha <= 1
110        }
111    }
112
113    /// Get the variance of the distribution.
114    /// Only defined for alpha > 2.
115    pub fn variance(&self) -> Option<f64> {
116        if self.alpha > 2.0 {
117            let numerator = self.x_min.powi(2) * self.alpha;
118            let denominator = (self.alpha - 1.0).powi(2) * (self.alpha - 2.0);
119            Some(numerator / denominator)
120        } else {
121            None // Infinite for alpha <= 2
122        }
123    }
124}
125
126/// Pareto distribution sampler.
127pub struct ParetoSampler {
128    rng: ChaCha8Rng,
129    config: ParetoConfig,
130    distribution: Pareto<f64>,
131    decimal_multiplier: f64,
132}
133
134impl ParetoSampler {
135    /// Create a new Pareto sampler.
136    pub fn new(seed: u64, config: ParetoConfig) -> Result<Self, String> {
137        config.validate()?;
138
139        let distribution = Pareto::new(config.x_min, config.alpha)
140            .map_err(|e| format!("Invalid Pareto distribution: {}", e))?;
141
142        let decimal_multiplier = 10_f64.powi(config.decimal_places as i32);
143
144        Ok(Self {
145            rng: ChaCha8Rng::seed_from_u64(seed),
146            config,
147            distribution,
148            decimal_multiplier,
149        })
150    }
151
152    /// Sample a value from the distribution.
153    pub fn sample(&mut self) -> f64 {
154        let mut value = self.distribution.sample(&mut self.rng);
155
156        // Apply max constraint
157        if let Some(max) = self.config.max_value {
158            value = value.min(max);
159        }
160
161        // Round to decimal places
162        (value * self.decimal_multiplier).round() / self.decimal_multiplier
163    }
164
165    /// Sample a value as Decimal.
166    pub fn sample_decimal(&mut self) -> Decimal {
167        let value = self.sample();
168        Decimal::from_f64_retain(value).unwrap_or(Decimal::ONE)
169    }
170
171    /// Sample multiple values.
172    pub fn sample_n(&mut self, n: usize) -> Vec<f64> {
173        (0..n).map(|_| self.sample()).collect()
174    }
175
176    /// Reset the sampler with a new seed.
177    pub fn reset(&mut self, seed: u64) {
178        self.rng = ChaCha8Rng::seed_from_u64(seed);
179    }
180
181    /// Get the configuration.
182    pub fn config(&self) -> &ParetoConfig {
183        &self.config
184    }
185}
186
187#[cfg(test)]
188mod tests {
189    use super::*;
190
191    #[test]
192    fn test_pareto_validation() {
193        let config = ParetoConfig::new(2.0, 100.0);
194        assert!(config.validate().is_ok());
195
196        let invalid_alpha = ParetoConfig::new(-1.0, 100.0);
197        assert!(invalid_alpha.validate().is_err());
198
199        let invalid_xmin = ParetoConfig::new(2.0, -100.0);
200        assert!(invalid_xmin.validate().is_err());
201    }
202
203    #[test]
204    fn test_pareto_sampling() {
205        let config = ParetoConfig::new(2.0, 100.0);
206        let mut sampler = ParetoSampler::new(42, config).unwrap();
207
208        let samples = sampler.sample_n(1000);
209        assert_eq!(samples.len(), 1000);
210
211        // All samples should be >= x_min
212        assert!(samples.iter().all(|&x| x >= 100.0));
213    }
214
215    #[test]
216    fn test_pareto_determinism() {
217        let config = ParetoConfig::new(2.0, 100.0);
218
219        let mut sampler1 = ParetoSampler::new(42, config.clone()).unwrap();
220        let mut sampler2 = ParetoSampler::new(42, config).unwrap();
221
222        for _ in 0..100 {
223            assert_eq!(sampler1.sample(), sampler2.sample());
224        }
225    }
226
227    #[test]
228    fn test_pareto_max_constraint() {
229        let mut config = ParetoConfig::new(2.0, 100.0);
230        config.max_value = Some(1000.0);
231
232        let mut sampler = ParetoSampler::new(42, config).unwrap();
233        let samples = sampler.sample_n(1000);
234
235        assert!(samples.iter().all(|&x| x <= 1000.0));
236    }
237
238    #[test]
239    fn test_pareto_expected_value() {
240        let config = ParetoConfig::new(2.0, 100.0);
241        // E[X] = alpha * x_min / (alpha - 1) = 2 * 100 / 1 = 200
242        assert_eq!(config.expected_value(), Some(200.0));
243
244        // No expected value for alpha <= 1
245        let heavy_tail = ParetoConfig::new(1.0, 100.0);
246        assert_eq!(heavy_tail.expected_value(), None);
247    }
248
249    #[test]
250    fn test_pareto_presets() {
251        let capex = ParetoConfig::capital_expenditure();
252        assert!(capex.validate().is_ok());
253        assert_eq!(capex.alpha, 1.5);
254
255        let maintenance = ParetoConfig::maintenance_costs();
256        assert!(maintenance.validate().is_ok());
257
258        let vendor = ParetoConfig::vendor_spend();
259        assert!(vendor.validate().is_ok());
260    }
261
262    #[test]
263    fn test_heavy_tail_behavior() {
264        // With alpha=1.5 and x_min=100:
265        // P(X > 1000) = (100/1000)^1.5 = 0.0316 (~3.16%)
266        // For 10000 samples, expect ~316 values > 1000
267        let config = ParetoConfig::new(1.5, 100.0);
268        let mut sampler = ParetoSampler::new(42, config).unwrap();
269
270        let samples = sampler.sample_n(10000);
271        let large_values = samples.iter().filter(|&&x| x > 1000.0).count();
272
273        // With heavy tail, we should have around 300 large values (3%)
274        // Use a loose bound to account for statistical variation
275        assert!(
276            large_values > 200 && large_values < 500,
277            "Expected ~316 values > 1000, got {}",
278            large_values
279        );
280    }
281}