1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
//! [`SessionContext`] API for registering data sources and executing queries
use std::collections::HashSet;
use std::fmt::Debug;
use std::sync::{Arc, Weak};
use super::options::ReadOptions;
use crate::{
catalog::{
CatalogProvider, CatalogProviderList, TableProvider, TableProviderFactory,
},
catalog_common::listing_schema::ListingSchemaProvider,
catalog_common::memory::MemorySchemaProvider,
catalog_common::MemoryCatalogProvider,
dataframe::DataFrame,
datasource::{
function::{TableFunction, TableFunctionImpl},
listing::{ListingOptions, ListingTable, ListingTableConfig, ListingTableUrl},
},
datasource::{provider_as_source, MemTable, ViewTable},
error::{DataFusionError, Result},
execution::{options::ArrowReadOptions, runtime_env::RuntimeEnv, FunctionRegistry},
logical_expr::AggregateUDF,
logical_expr::ScalarUDF,
logical_expr::{
CreateCatalog, CreateCatalogSchema, CreateExternalTable, CreateFunction,
CreateMemoryTable, CreateView, DropCatalogSchema, DropFunction, DropTable,
DropView, LogicalPlan, LogicalPlanBuilder, SetVariable, TableType, UNNAMED_TABLE,
},
physical_expr::PhysicalExpr,
physical_plan::ExecutionPlan,
variable::{VarProvider, VarType},
};
use arrow::datatypes::SchemaRef;
use arrow::record_batch::RecordBatch;
use arrow_schema::Schema;
use datafusion_common::{
config::{ConfigExtension, TableOptions},
exec_err, not_impl_err, plan_datafusion_err, plan_err,
tree_node::{TreeNodeRecursion, TreeNodeVisitor},
DFSchema, SchemaReference, TableReference,
};
use datafusion_execution::registry::SerializerRegistry;
use datafusion_expr::{
expr_rewriter::FunctionRewrite,
logical_plan::{DdlStatement, Statement},
planner::ExprPlanner,
Expr, UserDefinedLogicalNode, WindowUDF,
};
// backwards compatibility
pub use crate::execution::session_state::SessionState;
use async_trait::async_trait;
use chrono::{DateTime, Utc};
use object_store::ObjectStore;
use parking_lot::RwLock;
use url::Url;
use crate::execution::session_state::SessionStateBuilder;
pub use datafusion_execution::config::SessionConfig;
pub use datafusion_execution::TaskContext;
pub use datafusion_expr::execution_props::ExecutionProps;
use datafusion_optimizer::{AnalyzerRule, OptimizerRule};
mod avro;
mod csv;
mod json;
#[cfg(feature = "parquet")]
mod parquet;
/// DataFilePaths adds a method to convert strings and vector of strings to vector of [`ListingTableUrl`] URLs.
/// This allows methods such [`SessionContext::read_csv`] and [`SessionContext::read_avro`]
/// to take either a single file or multiple files.
pub trait DataFilePaths {
/// Parse to a vector of [`ListingTableUrl`] URLs.
fn to_urls(self) -> Result<Vec<ListingTableUrl>>;
}
impl DataFilePaths for &str {
fn to_urls(self) -> Result<Vec<ListingTableUrl>> {
Ok(vec![ListingTableUrl::parse(self)?])
}
}
impl DataFilePaths for String {
fn to_urls(self) -> Result<Vec<ListingTableUrl>> {
Ok(vec![ListingTableUrl::parse(self)?])
}
}
impl DataFilePaths for &String {
fn to_urls(self) -> Result<Vec<ListingTableUrl>> {
Ok(vec![ListingTableUrl::parse(self)?])
}
}
impl<P> DataFilePaths for Vec<P>
where
P: AsRef<str>,
{
fn to_urls(self) -> Result<Vec<ListingTableUrl>> {
self.iter()
.map(ListingTableUrl::parse)
.collect::<Result<Vec<ListingTableUrl>>>()
}
}
/// Main interface for executing queries with DataFusion. Maintains
/// the state of the connection between a user and an instance of the
/// DataFusion engine.
///
/// # Overview
///
/// [`SessionContext`] provides the following functionality:
///
/// * Create a [`DataFrame`] from a CSV or Parquet data source.
/// * Register a CSV or Parquet data source as a table that can be referenced from a SQL query.
/// * Register a custom data source that can be referenced from a SQL query.
/// * Execution a SQL query
///
/// # Example: DataFrame API
///
/// The following example demonstrates how to use the context to execute a query against a CSV
/// data source using the [`DataFrame`] API:
///
/// ```
/// use datafusion::prelude::*;
/// # use datafusion::functions_aggregate::expr_fn::min;
/// # use datafusion::{error::Result, assert_batches_eq};
/// # #[tokio::main]
/// # async fn main() -> Result<()> {
/// let ctx = SessionContext::new();
/// let df = ctx.read_csv("tests/data/example.csv", CsvReadOptions::new()).await?;
/// let df = df.filter(col("a").lt_eq(col("b")))?
/// .aggregate(vec![col("a")], vec![min(col("b"))])?
/// .limit(0, Some(100))?;
/// let results = df
/// .collect()
/// .await?;
/// assert_batches_eq!(
/// &[
/// "+---+----------------+",
/// "| a | min(?table?.b) |",
/// "+---+----------------+",
/// "| 1 | 2 |",
/// "+---+----------------+",
/// ],
/// &results
/// );
/// # Ok(())
/// # }
/// ```
///
/// # Example: SQL API
///
/// The following example demonstrates how to execute the same query using SQL:
///
/// ```
/// use datafusion::prelude::*;
/// # use datafusion::{error::Result, assert_batches_eq};
/// # #[tokio::main]
/// # async fn main() -> Result<()> {
/// let ctx = SessionContext::new();
/// ctx.register_csv("example", "tests/data/example.csv", CsvReadOptions::new()).await?;
/// let results = ctx
/// .sql("SELECT a, min(b) FROM example GROUP BY a LIMIT 100")
/// .await?
/// .collect()
/// .await?;
/// assert_batches_eq!(
/// &[
/// "+---+----------------+",
/// "| a | min(example.b) |",
/// "+---+----------------+",
/// "| 1 | 2 |",
/// "+---+----------------+",
/// ],
/// &results
/// );
/// # Ok(())
/// # }
/// ```
///
/// # `SessionContext`, `SessionState`, and `TaskContext`
///
/// The state required to optimize, and evaluate queries is
/// broken into three levels to allow tailoring
///
/// The objects are:
///
/// 1. [`SessionContext`]: Most users should use a `SessionContext`. It contains
/// all information required to execute queries including high level APIs such
/// as [`SessionContext::sql`]. All queries run with the same `SessionContext`
/// share the same configuration and resources (e.g. memory limits).
///
/// 2. [`SessionState`]: contains information required to plan and execute an
/// individual query (e.g. creating a [`LogicalPlan`] or [`ExecutionPlan`]).
/// Each query is planned and executed using its own `SessionState`, which can
/// be created with [`SessionContext::state`]. `SessionState` allows finer
/// grained control over query execution, for example disallowing DDL operations
/// such as `CREATE TABLE`.
///
/// 3. [`TaskContext`] contains the state required for query execution (e.g.
/// [`ExecutionPlan::execute`]). It contains a subset of information in
/// [`SessionState`]. `TaskContext` allows executing [`ExecutionPlan`]s
/// [`PhysicalExpr`]s without requiring a full [`SessionState`].
///
/// [`PhysicalExpr`]: crate::physical_expr::PhysicalExpr
#[derive(Clone)]
pub struct SessionContext {
/// UUID for the session
session_id: String,
/// Session start time
session_start_time: DateTime<Utc>,
/// Shared session state for the session
state: Arc<RwLock<SessionState>>,
}
impl Default for SessionContext {
fn default() -> Self {
Self::new()
}
}
impl SessionContext {
/// Creates a new `SessionContext` using the default [`SessionConfig`].
pub fn new() -> Self {
Self::new_with_config(SessionConfig::new())
}
/// Finds any [`ListingSchemaProvider`]s and instructs them to reload tables from "disk"
pub async fn refresh_catalogs(&self) -> Result<()> {
let cat_names = self.catalog_names().clone();
for cat_name in cat_names.iter() {
let cat = self.catalog(cat_name.as_str()).ok_or_else(|| {
DataFusionError::Internal("Catalog not found!".to_string())
})?;
for schema_name in cat.schema_names() {
let schema = cat.schema(schema_name.as_str()).ok_or_else(|| {
DataFusionError::Internal("Schema not found!".to_string())
})?;
let lister = schema.as_any().downcast_ref::<ListingSchemaProvider>();
if let Some(lister) = lister {
lister.refresh(&self.state()).await?;
}
}
}
Ok(())
}
/// Creates a new `SessionContext` using the provided
/// [`SessionConfig`] and a new [`RuntimeEnv`].
///
/// See [`Self::new_with_config_rt`] for more details on resource
/// limits.
pub fn new_with_config(config: SessionConfig) -> Self {
let runtime = Arc::new(RuntimeEnv::default());
Self::new_with_config_rt(config, runtime)
}
/// Creates a new `SessionContext` using the provided
/// [`SessionConfig`] and a new [`RuntimeEnv`].
#[deprecated(since = "32.0.0", note = "Use SessionContext::new_with_config")]
pub fn with_config(config: SessionConfig) -> Self {
Self::new_with_config(config)
}
/// Creates a new `SessionContext` using the provided
/// [`SessionConfig`] and a [`RuntimeEnv`].
///
/// # Resource Limits
///
/// By default, each new `SessionContext` creates a new
/// `RuntimeEnv`, and therefore will not enforce memory or disk
/// limits for queries run on different `SessionContext`s.
///
/// To enforce resource limits (e.g. to limit the total amount of
/// memory used) across all DataFusion queries in a process,
/// all `SessionContext`'s should be configured with the
/// same `RuntimeEnv`.
pub fn new_with_config_rt(config: SessionConfig, runtime: Arc<RuntimeEnv>) -> Self {
let state = SessionStateBuilder::new()
.with_config(config)
.with_runtime_env(runtime)
.with_default_features()
.build();
Self::new_with_state(state)
}
/// Creates a new `SessionContext` using the provided
/// [`SessionConfig`] and a [`RuntimeEnv`].
#[deprecated(since = "32.0.0", note = "Use SessionState::new_with_config_rt")]
pub fn with_config_rt(config: SessionConfig, runtime: Arc<RuntimeEnv>) -> Self {
Self::new_with_config_rt(config, runtime)
}
/// Creates a new `SessionContext` using the provided [`SessionState`]
pub fn new_with_state(state: SessionState) -> Self {
Self {
session_id: state.session_id().to_string(),
session_start_time: Utc::now(),
state: Arc::new(RwLock::new(state)),
}
}
/// Creates a new `SessionContext` using the provided [`SessionState`]
#[deprecated(since = "32.0.0", note = "Use SessionContext::new_with_state")]
pub fn with_state(state: SessionState) -> Self {
Self::new_with_state(state)
}
/// Returns the time this `SessionContext` was created
pub fn session_start_time(&self) -> DateTime<Utc> {
self.session_start_time
}
/// Registers a [`FunctionFactory`] to handle `CREATE FUNCTION` statements
pub fn with_function_factory(
self,
function_factory: Arc<dyn FunctionFactory>,
) -> Self {
self.state.write().set_function_factory(function_factory);
self
}
/// Adds an optimizer rule to the end of the existing rules.
///
/// See [`SessionState`] for more control of when the rule is applied.
pub fn add_optimizer_rule(
&self,
optimizer_rule: Arc<dyn OptimizerRule + Send + Sync>,
) {
self.state.write().append_optimizer_rule(optimizer_rule);
}
/// Adds an analyzer rule to the end of the existing rules.
///
/// See [`SessionState`] for more control of when the rule is applied.
pub fn add_analyzer_rule(&self, analyzer_rule: Arc<dyn AnalyzerRule + Send + Sync>) {
self.state.write().add_analyzer_rule(analyzer_rule);
}
/// Registers an [`ObjectStore`] to be used with a specific URL prefix.
///
/// See [`RuntimeEnv::register_object_store`] for more details.
///
/// # Example: register a local object store for the "file://" URL prefix
/// ```
/// # use std::sync::Arc;
/// # use datafusion::prelude::SessionContext;
/// # use datafusion_execution::object_store::ObjectStoreUrl;
/// let object_store_url = ObjectStoreUrl::parse("file://").unwrap();
/// let object_store = object_store::local::LocalFileSystem::new();
/// let ctx = SessionContext::new();
/// // All files with the file:// url prefix will be read from the local file system
/// ctx.register_object_store(object_store_url.as_ref(), Arc::new(object_store));
/// ```
pub fn register_object_store(
&self,
url: &Url,
object_store: Arc<dyn ObjectStore>,
) -> Option<Arc<dyn ObjectStore>> {
self.runtime_env().register_object_store(url, object_store)
}
/// Registers the [`RecordBatch`] as the specified table name
pub fn register_batch(
&self,
table_name: &str,
batch: RecordBatch,
) -> Result<Option<Arc<dyn TableProvider>>> {
let table = MemTable::try_new(batch.schema(), vec![vec![batch]])?;
self.register_table(
TableReference::Bare {
table: table_name.into(),
},
Arc::new(table),
)
}
/// Return the [RuntimeEnv] used to run queries with this `SessionContext`
pub fn runtime_env(&self) -> Arc<RuntimeEnv> {
self.state.read().runtime_env().clone()
}
/// Returns an id that uniquely identifies this `SessionContext`.
pub fn session_id(&self) -> String {
self.session_id.clone()
}
/// Return the [`TableProviderFactory`] that is registered for the
/// specified file type, if any.
pub fn table_factory(
&self,
file_type: &str,
) -> Option<Arc<dyn TableProviderFactory>> {
self.state.read().table_factories().get(file_type).cloned()
}
/// Return the `enable_ident_normalization` of this Session
pub fn enable_ident_normalization(&self) -> bool {
self.state
.read()
.config()
.options()
.sql_parser
.enable_ident_normalization
}
/// Return a copied version of config for this Session
pub fn copied_config(&self) -> SessionConfig {
self.state.read().config().clone()
}
/// Return a copied version of table options for this Session
pub fn copied_table_options(&self) -> TableOptions {
self.state.read().default_table_options()
}
/// Creates a [`DataFrame`] from SQL query text.
///
/// Note: This API implements DDL statements such as `CREATE TABLE` and
/// `CREATE VIEW` and DML statements such as `INSERT INTO` with in-memory
/// default implementations. See [`Self::sql_with_options`].
///
/// # Example: Running SQL queries
///
/// See the example on [`Self`]
///
/// # Example: Creating a Table with SQL
///
/// ```
/// use datafusion::prelude::*;
/// # use datafusion::{error::Result, assert_batches_eq};
/// # #[tokio::main]
/// # async fn main() -> Result<()> {
/// let ctx = SessionContext::new();
/// ctx
/// .sql("CREATE TABLE foo (x INTEGER)")
/// .await?
/// .collect()
/// .await?;
/// assert!(ctx.table_exist("foo").unwrap());
/// # Ok(())
/// # }
/// ```
pub async fn sql(&self, sql: &str) -> Result<DataFrame> {
self.sql_with_options(sql, SQLOptions::new()).await
}
/// Creates a [`DataFrame`] from SQL query text, first validating
/// that the queries are allowed by `options`
///
/// # Example: Preventing Creating a Table with SQL
///
/// If you want to avoid creating tables, or modifying data or the
/// session, set [`SQLOptions`] appropriately:
///
/// ```
/// use datafusion::prelude::*;
/// # use datafusion::{error::Result};
/// # use datafusion::physical_plan::collect;
/// # #[tokio::main]
/// # async fn main() -> Result<()> {
/// let ctx = SessionContext::new();
/// let options = SQLOptions::new()
/// .with_allow_ddl(false);
/// let err = ctx.sql_with_options("CREATE TABLE foo (x INTEGER)", options)
/// .await
/// .unwrap_err();
/// assert!(
/// err.to_string().starts_with("Error during planning: DDL not supported: CreateMemoryTable")
/// );
/// # Ok(())
/// # }
/// ```
pub async fn sql_with_options(
&self,
sql: &str,
options: SQLOptions,
) -> Result<DataFrame> {
let plan = self.state().create_logical_plan(sql).await?;
options.verify_plan(&plan)?;
self.execute_logical_plan(plan).await
}
/// Creates logical expressions from SQL query text.
///
/// # Example: Parsing SQL queries
///
/// ```
/// # use arrow::datatypes::{DataType, Field, Schema};
/// # use datafusion::prelude::*;
/// # use datafusion_common::{DFSchema, Result};
/// # #[tokio::main]
/// # async fn main() -> Result<()> {
/// // datafusion will parse number as i64 first.
/// let sql = "a > 10";
/// let expected = col("a").gt(lit(10 as i64));
/// // provide type information that `a` is an Int32
/// let schema = Schema::new(vec![Field::new("a", DataType::Int32, true)]);
/// let df_schema = DFSchema::try_from(schema).unwrap();
/// let expr = SessionContext::new()
/// .parse_sql_expr(sql, &df_schema)?;
/// assert_eq!(expected, expr);
/// # Ok(())
/// # }
/// ```
pub fn parse_sql_expr(&self, sql: &str, df_schema: &DFSchema) -> Result<Expr> {
self.state.read().create_logical_expr(sql, df_schema)
}
/// Execute the [`LogicalPlan`], return a [`DataFrame`]. This API
/// is not featured limited (so all SQL such as `CREATE TABLE` and
/// `COPY` will be run).
///
/// If you wish to limit the type of plan that can be run from
/// SQL, see [`Self::sql_with_options`] and
/// [`SQLOptions::verify_plan`].
pub async fn execute_logical_plan(&self, plan: LogicalPlan) -> Result<DataFrame> {
match plan {
LogicalPlan::Ddl(ddl) => {
// Box::pin avoids allocating the stack space within this function's frame
// for every one of these individual async functions, decreasing the risk of
// stack overflows.
match ddl {
DdlStatement::CreateExternalTable(cmd) => {
(Box::pin(async move { self.create_external_table(&cmd).await })
as std::pin::Pin<Box<dyn futures::Future<Output = _> + Send>>)
.await
}
DdlStatement::CreateMemoryTable(cmd) => {
Box::pin(self.create_memory_table(cmd)).await
}
DdlStatement::CreateView(cmd) => {
Box::pin(self.create_view(cmd)).await
}
DdlStatement::CreateCatalogSchema(cmd) => {
Box::pin(self.create_catalog_schema(cmd)).await
}
DdlStatement::CreateCatalog(cmd) => {
Box::pin(self.create_catalog(cmd)).await
}
DdlStatement::DropTable(cmd) => Box::pin(self.drop_table(cmd)).await,
DdlStatement::DropView(cmd) => Box::pin(self.drop_view(cmd)).await,
DdlStatement::DropCatalogSchema(cmd) => {
Box::pin(self.drop_schema(cmd)).await
}
DdlStatement::CreateFunction(cmd) => {
Box::pin(self.create_function(cmd)).await
}
DdlStatement::DropFunction(cmd) => {
Box::pin(self.drop_function(cmd)).await
}
ddl => Ok(DataFrame::new(self.state(), LogicalPlan::Ddl(ddl))),
}
}
// TODO what about the other statements (like TransactionStart and TransactionEnd)
LogicalPlan::Statement(Statement::SetVariable(stmt)) => {
self.set_variable(stmt).await
}
plan => Ok(DataFrame::new(self.state(), plan)),
}
}
/// Create a [`PhysicalExpr`] from an [`Expr`] after applying type
/// coercion and function rewrites.
///
/// Note: The expression is not [simplified] or otherwise optimized:
/// `a = 1 + 2` will not be simplified to `a = 3` as this is a more involved process.
/// See the [expr_api] example for how to simplify expressions.
///
/// # Example
/// ```
/// # use std::sync::Arc;
/// # use arrow::datatypes::{DataType, Field, Schema};
/// # use datafusion::prelude::*;
/// # use datafusion_common::DFSchema;
/// // a = 1 (i64)
/// let expr = col("a").eq(lit(1i64));
/// // provide type information that `a` is an Int32
/// let schema = Schema::new(vec![Field::new("a", DataType::Int32, true)]);
/// let df_schema = DFSchema::try_from(schema).unwrap();
/// // Create a PhysicalExpr. Note DataFusion automatically coerces (casts) `1i64` to `1i32`
/// let physical_expr = SessionContext::new()
/// .create_physical_expr(expr, &df_schema).unwrap();
/// ```
/// # See Also
/// * [`SessionState::create_physical_expr`] for a lower level API
///
/// [simplified]: datafusion_optimizer::simplify_expressions
/// [expr_api]: https://github.com/apache/datafusion/blob/main/datafusion-examples/examples/expr_api.rs
pub fn create_physical_expr(
&self,
expr: Expr,
df_schema: &DFSchema,
) -> Result<Arc<dyn PhysicalExpr>> {
self.state.read().create_physical_expr(expr, df_schema)
}
// return an empty dataframe
fn return_empty_dataframe(&self) -> Result<DataFrame> {
let plan = LogicalPlanBuilder::empty(false).build()?;
Ok(DataFrame::new(self.state(), plan))
}
async fn create_external_table(
&self,
cmd: &CreateExternalTable,
) -> Result<DataFrame> {
let exist = self.table_exist(cmd.name.clone())?;
if exist {
match cmd.if_not_exists {
true => return self.return_empty_dataframe(),
false => {
return exec_err!("Table '{}' already exists", cmd.name);
}
}
}
let table_provider: Arc<dyn TableProvider> =
self.create_custom_table(cmd).await?;
self.register_table(cmd.name.clone(), table_provider)?;
self.return_empty_dataframe()
}
async fn create_memory_table(&self, cmd: CreateMemoryTable) -> Result<DataFrame> {
let CreateMemoryTable {
name,
input,
if_not_exists,
or_replace,
constraints,
column_defaults,
} = cmd;
let input = Arc::try_unwrap(input).unwrap_or_else(|e| e.as_ref().clone());
let input = self.state().optimize(&input)?;
let table = self.table(name.clone()).await;
match (if_not_exists, or_replace, table) {
(true, false, Ok(_)) => self.return_empty_dataframe(),
(false, true, Ok(_)) => {
self.deregister_table(name.clone())?;
let schema = Arc::new(input.schema().as_ref().into());
let physical = DataFrame::new(self.state(), input);
let batches: Vec<_> = physical.collect_partitioned().await?;
let table = Arc::new(
// pass constraints and column defaults to the mem table.
MemTable::try_new(schema, batches)?
.with_constraints(constraints)
.with_column_defaults(column_defaults.into_iter().collect()),
);
self.register_table(name.clone(), table)?;
self.return_empty_dataframe()
}
(true, true, Ok(_)) => {
exec_err!("'IF NOT EXISTS' cannot coexist with 'REPLACE'")
}
(_, _, Err(_)) => {
let df_schema = input.schema();
let schema = Arc::new(df_schema.as_ref().into());
let physical = DataFrame::new(self.state(), input);
let batches: Vec<_> = physical.collect_partitioned().await?;
let table = Arc::new(
// pass constraints and column defaults to the mem table.
MemTable::try_new(schema, batches)?
.with_constraints(constraints)
.with_column_defaults(column_defaults.into_iter().collect()),
);
self.register_table(name, table)?;
self.return_empty_dataframe()
}
(false, false, Ok(_)) => exec_err!("Table '{name}' already exists"),
}
}
async fn create_view(&self, cmd: CreateView) -> Result<DataFrame> {
let CreateView {
name,
input,
or_replace,
definition,
} = cmd;
let view = self.table(name.clone()).await;
match (or_replace, view) {
(true, Ok(_)) => {
self.deregister_table(name.clone())?;
let table = Arc::new(ViewTable::try_new((*input).clone(), definition)?);
self.register_table(name, table)?;
self.return_empty_dataframe()
}
(_, Err(_)) => {
let table = Arc::new(ViewTable::try_new((*input).clone(), definition)?);
self.register_table(name, table)?;
self.return_empty_dataframe()
}
(false, Ok(_)) => exec_err!("Table '{name}' already exists"),
}
}
async fn create_catalog_schema(&self, cmd: CreateCatalogSchema) -> Result<DataFrame> {
let CreateCatalogSchema {
schema_name,
if_not_exists,
..
} = cmd;
// sqlparser doesnt accept database / catalog as parameter to CREATE SCHEMA
// so for now, we default to default catalog
let tokens: Vec<&str> = schema_name.split('.').collect();
let (catalog, schema_name) = match tokens.len() {
1 => {
let state = self.state.read();
let name = &state.config().options().catalog.default_catalog;
let catalog = state.catalog_list().catalog(name).ok_or_else(|| {
DataFusionError::Execution(format!(
"Missing default catalog '{name}'"
))
})?;
(catalog, tokens[0])
}
2 => {
let name = &tokens[0];
let catalog = self.catalog(name).ok_or_else(|| {
DataFusionError::Execution(format!("Missing catalog '{name}'"))
})?;
(catalog, tokens[1])
}
_ => return exec_err!("Unable to parse catalog from {schema_name}"),
};
let schema = catalog.schema(schema_name);
match (if_not_exists, schema) {
(true, Some(_)) => self.return_empty_dataframe(),
(true, None) | (false, None) => {
let schema = Arc::new(MemorySchemaProvider::new());
catalog.register_schema(schema_name, schema)?;
self.return_empty_dataframe()
}
(false, Some(_)) => exec_err!("Schema '{schema_name}' already exists"),
}
}
async fn create_catalog(&self, cmd: CreateCatalog) -> Result<DataFrame> {
let CreateCatalog {
catalog_name,
if_not_exists,
..
} = cmd;
let catalog = self.catalog(catalog_name.as_str());
match (if_not_exists, catalog) {
(true, Some(_)) => self.return_empty_dataframe(),
(true, None) | (false, None) => {
let new_catalog = Arc::new(MemoryCatalogProvider::new());
self.state
.write()
.catalog_list()
.register_catalog(catalog_name, new_catalog);
self.return_empty_dataframe()
}
(false, Some(_)) => exec_err!("Catalog '{catalog_name}' already exists"),
}
}
async fn drop_table(&self, cmd: DropTable) -> Result<DataFrame> {
let DropTable {
name, if_exists, ..
} = cmd;
let result = self
.find_and_deregister(name.clone(), TableType::Base)
.await;
match (result, if_exists) {
(Ok(true), _) => self.return_empty_dataframe(),
(_, true) => self.return_empty_dataframe(),
(_, _) => exec_err!("Table '{name}' doesn't exist."),
}
}
async fn drop_view(&self, cmd: DropView) -> Result<DataFrame> {
let DropView {
name, if_exists, ..
} = cmd;
let result = self
.find_and_deregister(name.clone(), TableType::View)
.await;
match (result, if_exists) {
(Ok(true), _) => self.return_empty_dataframe(),
(_, true) => self.return_empty_dataframe(),
(_, _) => exec_err!("View '{name}' doesn't exist."),
}
}
async fn drop_schema(&self, cmd: DropCatalogSchema) -> Result<DataFrame> {
let DropCatalogSchema {
name,
if_exists: allow_missing,
cascade,
schema: _,
} = cmd;
let catalog = {
let state = self.state.read();
let catalog_name = match &name {
SchemaReference::Full { catalog, .. } => catalog.to_string(),
SchemaReference::Bare { .. } => {
state.config_options().catalog.default_catalog.to_string()
}
};
if let Some(catalog) = state.catalog_list().catalog(&catalog_name) {
catalog
} else if allow_missing {
return self.return_empty_dataframe();
} else {
return self.schema_doesnt_exist_err(name);
}
};
let dereg = catalog.deregister_schema(name.schema_name(), cascade)?;
match (dereg, allow_missing) {
(None, true) => self.return_empty_dataframe(),
(None, false) => self.schema_doesnt_exist_err(name),
(Some(_), _) => self.return_empty_dataframe(),
}
}
fn schema_doesnt_exist_err(&self, schemaref: SchemaReference) -> Result<DataFrame> {
exec_err!("Schema '{schemaref}' doesn't exist.")
}
async fn set_variable(&self, stmt: SetVariable) -> Result<DataFrame> {
let SetVariable {
variable, value, ..
} = stmt;
let mut state = self.state.write();
state.config_mut().options_mut().set(&variable, &value)?;
drop(state);
self.return_empty_dataframe()
}
async fn create_custom_table(
&self,
cmd: &CreateExternalTable,
) -> Result<Arc<dyn TableProvider>> {
let state = self.state.read().clone();
let file_type = cmd.file_type.to_uppercase();
let factory =
state
.table_factories()
.get(file_type.as_str())
.ok_or_else(|| {
DataFusionError::Execution(format!(
"Unable to find factory for {}",
cmd.file_type
))
})?;
let table = (*factory).create(&state, cmd).await?;
Ok(table)
}
async fn find_and_deregister<'a>(
&self,
table_ref: impl Into<TableReference>,
table_type: TableType,
) -> Result<bool> {
let table_ref = table_ref.into();
let table = table_ref.table().to_owned();
let maybe_schema = {
let state = self.state.read();
let resolved = state.resolve_table_ref(table_ref);
state
.catalog_list()
.catalog(&resolved.catalog)
.and_then(|c| c.schema(&resolved.schema))
};
if let Some(schema) = maybe_schema {
if let Some(table_provider) = schema.table(&table).await? {
if table_provider.table_type() == table_type {
schema.deregister_table(&table)?;
return Ok(true);
}
}
}
Ok(false)
}
async fn create_function(&self, stmt: CreateFunction) -> Result<DataFrame> {
let function = {
let state = self.state.read().clone();
let function_factory = state.function_factory();
match function_factory {
Some(f) => f.create(&state, stmt).await?,
_ => Err(DataFusionError::Configuration(
"Function factory has not been configured".into(),
))?,
}
};
match function {
RegisterFunction::Scalar(f) => {
self.state.write().register_udf(f)?;
}
RegisterFunction::Aggregate(f) => {
self.state.write().register_udaf(f)?;
}
RegisterFunction::Window(f) => {
self.state.write().register_udwf(f)?;
}
RegisterFunction::Table(name, f) => self.register_udtf(&name, f),
};
self.return_empty_dataframe()
}
async fn drop_function(&self, stmt: DropFunction) -> Result<DataFrame> {
// we don't know function type at this point
// decision has been made to drop all functions
let mut dropped = false;
dropped |= self.state.write().deregister_udf(&stmt.name)?.is_some();
dropped |= self.state.write().deregister_udaf(&stmt.name)?.is_some();
dropped |= self.state.write().deregister_udwf(&stmt.name)?.is_some();
dropped |= self.state.write().deregister_udtf(&stmt.name)?.is_some();
// DROP FUNCTION IF EXISTS drops the specified function only if that
// function exists and in this way, it avoids error. While the DROP FUNCTION
// statement also performs the same function, it throws an
// error if the function does not exist.
if !stmt.if_exists && !dropped {
exec_err!("Function does not exist")
} else {
self.return_empty_dataframe()
}
}
/// Registers a variable provider within this context.
pub fn register_variable(
&self,
variable_type: VarType,
provider: Arc<dyn VarProvider + Send + Sync>,
) {
self.state
.write()
.execution_props_mut()
.add_var_provider(variable_type, provider);
}
/// Register a table UDF with this context
pub fn register_udtf(&self, name: &str, fun: Arc<dyn TableFunctionImpl>) {
self.state.write().register_udtf(name, fun)
}
/// Registers a scalar UDF within this context.
///
/// Note in SQL queries, function names are looked up using
/// lowercase unless the query uses quotes. For example,
///
/// - `SELECT MY_FUNC(x)...` will look for a function named `"my_func"`
/// - `SELECT "my_FUNC"(x)` will look for a function named `"my_FUNC"`
///
/// Any functions registered with the udf name or its aliases will be overwritten with this new function
pub fn register_udf(&self, f: ScalarUDF) {
let mut state = self.state.write();
state.register_udf(Arc::new(f)).ok();
}
/// Registers an aggregate UDF within this context.
///
/// Note in SQL queries, aggregate names are looked up using
/// lowercase unless the query uses quotes. For example,
///
/// - `SELECT MY_UDAF(x)...` will look for an aggregate named `"my_udaf"`
/// - `SELECT "my_UDAF"(x)` will look for an aggregate named `"my_UDAF"`
pub fn register_udaf(&self, f: AggregateUDF) {
self.state.write().register_udaf(Arc::new(f)).ok();
}
/// Registers a window UDF within this context.
///
/// Note in SQL queries, window function names are looked up using
/// lowercase unless the query uses quotes. For example,
///
/// - `SELECT MY_UDWF(x)...` will look for a window function named `"my_udwf"`
/// - `SELECT "my_UDWF"(x)` will look for a window function named `"my_UDWF"`
pub fn register_udwf(&self, f: WindowUDF) {
self.state.write().register_udwf(Arc::new(f)).ok();
}
/// Deregisters a UDF within this context.
pub fn deregister_udf(&self, name: &str) {
self.state.write().deregister_udf(name).ok();
}
/// Deregisters a UDAF within this context.
pub fn deregister_udaf(&self, name: &str) {
self.state.write().deregister_udaf(name).ok();
}
/// Deregisters a UDWF within this context.
pub fn deregister_udwf(&self, name: &str) {
self.state.write().deregister_udwf(name).ok();
}
/// Deregisters a UDTF within this context.
pub fn deregister_udtf(&self, name: &str) {
self.state.write().deregister_udtf(name).ok();
}
/// Creates a [`DataFrame`] for reading a data source.
///
/// For more control such as reading multiple files, you can use
/// [`read_table`](Self::read_table) with a [`ListingTable`].
async fn _read_type<'a, P: DataFilePaths>(
&self,
table_paths: P,
options: impl ReadOptions<'a>,
) -> Result<DataFrame> {
let table_paths = table_paths.to_urls()?;
let session_config = self.copied_config();
let listing_options =
options.to_listing_options(&session_config, self.copied_table_options());
let option_extension = listing_options.file_extension.clone();
if table_paths.is_empty() {
return exec_err!("No table paths were provided");
}
// check if the file extension matches the expected extension
for path in &table_paths {
let file_path = path.as_str();
if !file_path.ends_with(option_extension.clone().as_str())
&& !path.is_collection()
{
return exec_err!(
"File path '{file_path}' does not match the expected extension '{option_extension}'"
);
}
}
let resolved_schema = options
.get_resolved_schema(&session_config, self.state(), table_paths[0].clone())
.await?;
let config = ListingTableConfig::new_with_multi_paths(table_paths)
.with_listing_options(listing_options)
.with_schema(resolved_schema);
let provider = ListingTable::try_new(config)?;
self.read_table(Arc::new(provider))
}
/// Creates a [`DataFrame`] for reading an Arrow data source.
///
/// For more control such as reading multiple files, you can use
/// [`read_table`](Self::read_table) with a [`ListingTable`].
///
/// For an example, see [`read_csv`](Self::read_csv)
pub async fn read_arrow<P: DataFilePaths>(
&self,
table_paths: P,
options: ArrowReadOptions<'_>,
) -> Result<DataFrame> {
self._read_type(table_paths, options).await
}
/// Creates an empty DataFrame.
pub fn read_empty(&self) -> Result<DataFrame> {
Ok(DataFrame::new(
self.state(),
LogicalPlanBuilder::empty(true).build()?,
))
}
/// Creates a [`DataFrame`] for a [`TableProvider`] such as a
/// [`ListingTable`] or a custom user defined provider.
pub fn read_table(&self, provider: Arc<dyn TableProvider>) -> Result<DataFrame> {
Ok(DataFrame::new(
self.state(),
LogicalPlanBuilder::scan(UNNAMED_TABLE, provider_as_source(provider), None)?
.build()?,
))
}
/// Creates a [`DataFrame`] for reading a [`RecordBatch`]
pub fn read_batch(&self, batch: RecordBatch) -> Result<DataFrame> {
let provider = MemTable::try_new(batch.schema(), vec![vec![batch]])?;
Ok(DataFrame::new(
self.state(),
LogicalPlanBuilder::scan(
UNNAMED_TABLE,
provider_as_source(Arc::new(provider)),
None,
)?
.build()?,
))
}
/// Create a [`DataFrame`] for reading a [`Vec[`RecordBatch`]`]
pub fn read_batches(
&self,
batches: impl IntoIterator<Item = RecordBatch>,
) -> Result<DataFrame> {
// check schema uniqueness
let mut batches = batches.into_iter().peekable();
let schema = if let Some(batch) = batches.peek() {
batch.schema().clone()
} else {
Arc::new(Schema::empty())
};
let provider = MemTable::try_new(schema, vec![batches.collect()])?;
Ok(DataFrame::new(
self.state(),
LogicalPlanBuilder::scan(
UNNAMED_TABLE,
provider_as_source(Arc::new(provider)),
None,
)?
.build()?,
))
}
/// Registers a [`ListingTable`] that can assemble multiple files
/// from locations in an [`ObjectStore`] instance into a single
/// table.
///
/// This method is `async` because it might need to resolve the schema.
///
/// [`ObjectStore`]: object_store::ObjectStore
pub async fn register_listing_table(
&self,
name: &str,
table_path: impl AsRef<str>,
options: ListingOptions,
provided_schema: Option<SchemaRef>,
sql_definition: Option<String>,
) -> Result<()> {
let table_path = ListingTableUrl::parse(table_path)?;
let resolved_schema = match provided_schema {
Some(s) => s,
None => options.infer_schema(&self.state(), &table_path).await?,
};
let config = ListingTableConfig::new(table_path)
.with_listing_options(options)
.with_schema(resolved_schema);
let table = ListingTable::try_new(config)?.with_definition(sql_definition);
self.register_table(
TableReference::Bare { table: name.into() },
Arc::new(table),
)?;
Ok(())
}
/// Registers an Arrow file as a table that can be referenced from
/// SQL statements executed against this context.
pub async fn register_arrow(
&self,
name: &str,
table_path: &str,
options: ArrowReadOptions<'_>,
) -> Result<()> {
let listing_options = options
.to_listing_options(&self.copied_config(), self.copied_table_options());
self.register_listing_table(
name,
table_path,
listing_options,
options.schema.map(|s| Arc::new(s.to_owned())),
None,
)
.await?;
Ok(())
}
/// Registers a named catalog using a custom `CatalogProvider` so that
/// it can be referenced from SQL statements executed against this
/// context.
///
/// Returns the [`CatalogProvider`] previously registered for this
/// name, if any
pub fn register_catalog(
&self,
name: impl Into<String>,
catalog: Arc<dyn CatalogProvider>,
) -> Option<Arc<dyn CatalogProvider>> {
let name = name.into();
self.state
.read()
.catalog_list()
.register_catalog(name, catalog)
}
/// Retrieves the list of available catalog names.
pub fn catalog_names(&self) -> Vec<String> {
self.state.read().catalog_list().catalog_names()
}
/// Retrieves a [`CatalogProvider`] instance by name
pub fn catalog(&self, name: &str) -> Option<Arc<dyn CatalogProvider>> {
self.state.read().catalog_list().catalog(name)
}
/// Registers a [`TableProvider`] as a table that can be
/// referenced from SQL statements executed against this context.
///
/// Returns the [`TableProvider`] previously registered for this
/// reference, if any
pub fn register_table(
&self,
table_ref: impl Into<TableReference>,
provider: Arc<dyn TableProvider>,
) -> Result<Option<Arc<dyn TableProvider>>> {
let table_ref: TableReference = table_ref.into();
let table = table_ref.table().to_owned();
self.state
.read()
.schema_for_ref(table_ref)?
.register_table(table, provider)
}
/// Deregisters the given table.
///
/// Returns the registered provider, if any
pub fn deregister_table(
&self,
table_ref: impl Into<TableReference>,
) -> Result<Option<Arc<dyn TableProvider>>> {
let table_ref = table_ref.into();
let table = table_ref.table().to_owned();
self.state
.read()
.schema_for_ref(table_ref)?
.deregister_table(&table)
}
/// Return `true` if the specified table exists in the schema provider.
pub fn table_exist(&self, table_ref: impl Into<TableReference>) -> Result<bool> {
let table_ref: TableReference = table_ref.into();
let table = table_ref.table();
let table_ref = table_ref.clone();
Ok(self
.state
.read()
.schema_for_ref(table_ref)?
.table_exist(table))
}
/// Retrieves a [`DataFrame`] representing a table previously
/// registered by calling the [`register_table`] function.
///
/// Returns an error if no table has been registered with the
/// provided reference.
///
/// [`register_table`]: SessionContext::register_table
pub async fn table<'a>(
&self,
table_ref: impl Into<TableReference>,
) -> Result<DataFrame> {
let table_ref: TableReference = table_ref.into();
let provider = self.table_provider(table_ref.clone()).await?;
let plan = LogicalPlanBuilder::scan(
table_ref,
provider_as_source(Arc::clone(&provider)),
None,
)?
.build()?;
Ok(DataFrame::new(self.state(), plan))
}
/// Retrieves a [`TableFunction`] reference by name.
///
/// Returns an error if no table function has been registered with the provided name.
///
/// [`register_udtf`]: SessionContext::register_udtf
pub fn table_function(&self, name: &str) -> Result<Arc<TableFunction>> {
self.state
.read()
.table_functions()
.get(name)
.cloned()
.ok_or_else(|| plan_datafusion_err!("Table function '{name}' not found"))
}
/// Return a [`TableProvider`] for the specified table.
pub async fn table_provider<'a>(
&self,
table_ref: impl Into<TableReference>,
) -> Result<Arc<dyn TableProvider>> {
let table_ref = table_ref.into();
let table = table_ref.table().to_string();
let schema = self.state.read().schema_for_ref(table_ref)?;
match schema.table(&table).await? {
Some(ref provider) => Ok(Arc::clone(provider)),
_ => plan_err!("No table named '{table}'"),
}
}
/// Get a new TaskContext to run in this session
pub fn task_ctx(&self) -> Arc<TaskContext> {
Arc::new(TaskContext::from(self))
}
/// Return a new [`SessionState`] suitable for executing a single query.
///
/// Notes:
///
/// 1. `query_execution_start_time` is set to the current time for the
/// returned state.
///
/// 2. The returned state is not shared with the current session state
/// and this changes to the returned `SessionState` such as changing
/// [`ConfigOptions`] will not be reflected in this `SessionContext`.
///
/// [`ConfigOptions`]: crate::config::ConfigOptions
pub fn state(&self) -> SessionState {
let mut state = self.state.read().clone();
state.execution_props_mut().start_execution();
state
}
/// Get reference to [`SessionState`]
pub fn state_ref(&self) -> Arc<RwLock<SessionState>> {
self.state.clone()
}
/// Get weak reference to [`SessionState`]
pub fn state_weak_ref(&self) -> Weak<RwLock<SessionState>> {
Arc::downgrade(&self.state)
}
/// Register [`CatalogProviderList`] in [`SessionState`]
pub fn register_catalog_list(&self, catalog_list: Arc<dyn CatalogProviderList>) {
self.state.write().register_catalog_list(catalog_list)
}
/// Registers a [`ConfigExtension`] as a table option extension that can be
/// referenced from SQL statements executed against this context.
pub fn register_table_options_extension<T: ConfigExtension>(&self, extension: T) {
self.state
.write()
.register_table_options_extension(extension)
}
}
impl FunctionRegistry for SessionContext {
fn udfs(&self) -> HashSet<String> {
self.state.read().udfs()
}
fn udf(&self, name: &str) -> Result<Arc<ScalarUDF>> {
self.state.read().udf(name)
}
fn udaf(&self, name: &str) -> Result<Arc<AggregateUDF>> {
self.state.read().udaf(name)
}
fn udwf(&self, name: &str) -> Result<Arc<WindowUDF>> {
self.state.read().udwf(name)
}
fn register_udf(&mut self, udf: Arc<ScalarUDF>) -> Result<Option<Arc<ScalarUDF>>> {
self.state.write().register_udf(udf)
}
fn register_udaf(
&mut self,
udaf: Arc<AggregateUDF>,
) -> Result<Option<Arc<AggregateUDF>>> {
self.state.write().register_udaf(udaf)
}
fn register_udwf(&mut self, udwf: Arc<WindowUDF>) -> Result<Option<Arc<WindowUDF>>> {
self.state.write().register_udwf(udwf)
}
fn register_function_rewrite(
&mut self,
rewrite: Arc<dyn FunctionRewrite + Send + Sync>,
) -> Result<()> {
self.state.write().register_function_rewrite(rewrite)
}
fn expr_planners(&self) -> Vec<Arc<dyn ExprPlanner>> {
self.state.read().expr_planners()
}
fn register_expr_planner(
&mut self,
expr_planner: Arc<dyn ExprPlanner>,
) -> Result<()> {
self.state.write().register_expr_planner(expr_planner)
}
}
/// Create a new task context instance from SessionContext
impl From<&SessionContext> for TaskContext {
fn from(session: &SessionContext) -> Self {
TaskContext::from(&*session.state.read())
}
}
/// A planner used to add extensions to DataFusion logical and physical plans.
#[async_trait]
pub trait QueryPlanner {
/// Given a `LogicalPlan`, create an [`ExecutionPlan`] suitable for execution
async fn create_physical_plan(
&self,
logical_plan: &LogicalPlan,
session_state: &SessionState,
) -> Result<Arc<dyn ExecutionPlan>>;
}
/// A pluggable interface to handle `CREATE FUNCTION` statements
/// and interact with [SessionState] to registers new udf, udaf or udwf.
#[async_trait]
pub trait FunctionFactory: Sync + Send {
/// Handles creation of user defined function specified in [CreateFunction] statement
async fn create(
&self,
state: &SessionState,
statement: CreateFunction,
) -> Result<RegisterFunction>;
}
/// Type of function to create
pub enum RegisterFunction {
/// Scalar user defined function
Scalar(Arc<ScalarUDF>),
/// Aggregate user defined function
Aggregate(Arc<AggregateUDF>),
/// Window user defined function
Window(Arc<WindowUDF>),
/// Table user defined function
Table(String, Arc<dyn TableFunctionImpl>),
}
/// Default implementation of [SerializerRegistry] that throws unimplemented error
/// for all requests.
pub struct EmptySerializerRegistry;
impl SerializerRegistry for EmptySerializerRegistry {
fn serialize_logical_plan(
&self,
node: &dyn UserDefinedLogicalNode,
) -> Result<Vec<u8>> {
not_impl_err!(
"Serializing user defined logical plan node `{}` is not supported",
node.name()
)
}
fn deserialize_logical_plan(
&self,
name: &str,
_bytes: &[u8],
) -> Result<Arc<dyn UserDefinedLogicalNode>> {
not_impl_err!(
"Deserializing user defined logical plan node `{name}` is not supported"
)
}
}
/// Describes which SQL statements can be run.
///
/// See [`SessionContext::sql_with_options`] for more details.
#[derive(Clone, Debug, Copy)]
pub struct SQLOptions {
/// See [`Self::with_allow_ddl`]
allow_ddl: bool,
/// See [`Self::with_allow_dml`]
allow_dml: bool,
/// See [`Self::with_allow_statements`]
allow_statements: bool,
}
impl Default for SQLOptions {
fn default() -> Self {
Self {
allow_ddl: true,
allow_dml: true,
allow_statements: true,
}
}
}
impl SQLOptions {
/// Create a new `SQLOptions` with default values
pub fn new() -> Self {
Default::default()
}
/// Should DDL data definition commands (e.g. `CREATE TABLE`) be run? Defaults to `true`.
pub fn with_allow_ddl(mut self, allow: bool) -> Self {
self.allow_ddl = allow;
self
}
/// Should DML data modification commands (e.g. `INSERT` and `COPY`) be run? Defaults to `true`
pub fn with_allow_dml(mut self, allow: bool) -> Self {
self.allow_dml = allow;
self
}
/// Should Statements such as (e.g. `SET VARIABLE and `BEGIN TRANSACTION` ...`) be run?. Defaults to `true`
pub fn with_allow_statements(mut self, allow: bool) -> Self {
self.allow_statements = allow;
self
}
/// Return an error if the [`LogicalPlan`] has any nodes that are
/// incompatible with this [`SQLOptions`].
pub fn verify_plan(&self, plan: &LogicalPlan) -> Result<()> {
plan.visit_with_subqueries(&mut BadPlanVisitor::new(self))?;
Ok(())
}
}
struct BadPlanVisitor<'a> {
options: &'a SQLOptions,
}
impl<'a> BadPlanVisitor<'a> {
fn new(options: &'a SQLOptions) -> Self {
Self { options }
}
}
impl<'n, 'a> TreeNodeVisitor<'n> for BadPlanVisitor<'a> {
type Node = LogicalPlan;
fn f_down(&mut self, node: &'n Self::Node) -> Result<TreeNodeRecursion> {
match node {
LogicalPlan::Ddl(ddl) if !self.options.allow_ddl => {
plan_err!("DDL not supported: {}", ddl.name())
}
LogicalPlan::Dml(dml) if !self.options.allow_dml => {
plan_err!("DML not supported: {}", dml.op)
}
LogicalPlan::Copy(_) if !self.options.allow_dml => {
plan_err!("DML not supported: COPY")
}
LogicalPlan::Statement(stmt) if !self.options.allow_statements => {
plan_err!("Statement not supported: {}", stmt.name())
}
_ => Ok(TreeNodeRecursion::Continue),
}
}
}
#[cfg(test)]
mod tests {
use std::env;
use std::path::PathBuf;
use super::{super::options::CsvReadOptions, *};
use crate::assert_batches_eq;
use crate::execution::memory_pool::MemoryConsumer;
use crate::execution::runtime_env::RuntimeConfig;
use crate::test;
use crate::test_util::{plan_and_collect, populate_csv_partitions};
use datafusion_common_runtime::SpawnedTask;
use crate::catalog::SchemaProvider;
use crate::execution::session_state::SessionStateBuilder;
use crate::physical_planner::PhysicalPlanner;
use async_trait::async_trait;
use tempfile::TempDir;
#[tokio::test]
async fn shared_memory_and_disk_manager() {
// Demonstrate the ability to share DiskManager and
// MemoryPool between two different executions.
let ctx1 = SessionContext::new();
// configure with same memory / disk manager
let memory_pool = ctx1.runtime_env().memory_pool.clone();
let mut reservation = MemoryConsumer::new("test").register(&memory_pool);
reservation.grow(100);
let disk_manager = ctx1.runtime_env().disk_manager.clone();
let ctx2 =
SessionContext::new_with_config_rt(SessionConfig::new(), ctx1.runtime_env());
assert_eq!(ctx1.runtime_env().memory_pool.reserved(), 100);
assert_eq!(ctx2.runtime_env().memory_pool.reserved(), 100);
drop(reservation);
assert_eq!(ctx1.runtime_env().memory_pool.reserved(), 0);
assert_eq!(ctx2.runtime_env().memory_pool.reserved(), 0);
assert!(std::ptr::eq(
Arc::as_ptr(&disk_manager),
Arc::as_ptr(&ctx1.runtime_env().disk_manager)
));
assert!(std::ptr::eq(
Arc::as_ptr(&disk_manager),
Arc::as_ptr(&ctx2.runtime_env().disk_manager)
));
}
#[tokio::test]
async fn create_variable_expr() -> Result<()> {
let tmp_dir = TempDir::new()?;
let partition_count = 4;
let ctx = create_ctx(&tmp_dir, partition_count).await?;
let variable_provider = test::variable::SystemVar::new();
ctx.register_variable(VarType::System, Arc::new(variable_provider));
let variable_provider = test::variable::UserDefinedVar::new();
ctx.register_variable(VarType::UserDefined, Arc::new(variable_provider));
let provider = test::create_table_dual();
ctx.register_table("dual", provider)?;
let results =
plan_and_collect(&ctx, "SELECT @@version, @name, @integer + 1 FROM dual")
.await?;
let expected = [
"+----------------------+------------------------+---------------------+",
"| @@version | @name | @integer + Int64(1) |",
"+----------------------+------------------------+---------------------+",
"| system-var-@@version | user-defined-var-@name | 42 |",
"+----------------------+------------------------+---------------------+",
];
assert_batches_eq!(expected, &results);
Ok(())
}
#[tokio::test]
async fn create_variable_err() -> Result<()> {
let ctx = SessionContext::new();
let err = plan_and_collect(&ctx, "SElECT @= X3").await.unwrap_err();
assert_eq!(
err.strip_backtrace(),
"Error during planning: variable [\"@=\"] has no type information"
);
Ok(())
}
#[tokio::test]
async fn register_deregister() -> Result<()> {
let tmp_dir = TempDir::new()?;
let partition_count = 4;
let ctx = create_ctx(&tmp_dir, partition_count).await?;
let provider = test::create_table_dual();
ctx.register_table("dual", provider)?;
assert!(ctx.deregister_table("dual")?.is_some());
assert!(ctx.deregister_table("dual")?.is_none());
Ok(())
}
#[tokio::test]
async fn send_context_to_threads() -> Result<()> {
// ensure SessionContexts can be used in a multi-threaded
// environment. Usecase is for concurrent planing.
let tmp_dir = TempDir::new()?;
let partition_count = 4;
let ctx = Arc::new(create_ctx(&tmp_dir, partition_count).await?);
let threads: Vec<_> = (0..2)
.map(|_| ctx.clone())
.map(|ctx| {
SpawnedTask::spawn(async move {
// Ensure we can create logical plan code on a separate thread.
ctx.sql("SELECT c1, c2 FROM test WHERE c1 > 0 AND c1 < 3")
.await
})
})
.collect();
for handle in threads {
handle.join().await.unwrap().unwrap();
}
Ok(())
}
#[tokio::test]
async fn with_listing_schema_provider() -> Result<()> {
let path = PathBuf::from(env!("CARGO_MANIFEST_DIR"));
let path = path.join("tests/tpch-csv");
let url = format!("file://{}", path.display());
let rt_cfg = RuntimeConfig::new();
let runtime = Arc::new(RuntimeEnv::new(rt_cfg).unwrap());
let cfg = SessionConfig::new()
.set_str("datafusion.catalog.location", url.as_str())
.set_str("datafusion.catalog.format", "CSV")
.set_str("datafusion.catalog.has_header", "true");
let session_state = SessionStateBuilder::new()
.with_config(cfg)
.with_runtime_env(runtime)
.with_default_features()
.build();
let ctx = SessionContext::new_with_state(session_state);
ctx.refresh_catalogs().await?;
let result =
plan_and_collect(&ctx, "select c_name from default.customer limit 3;")
.await?;
let actual = arrow::util::pretty::pretty_format_batches(&result)
.unwrap()
.to_string();
let expected = r#"+--------------------+
| c_name |
+--------------------+
| Customer#000000002 |
| Customer#000000003 |
| Customer#000000004 |
+--------------------+"#;
assert_eq!(actual, expected);
Ok(())
}
#[tokio::test]
async fn custom_query_planner() -> Result<()> {
let runtime = Arc::new(RuntimeEnv::default());
let session_state = SessionStateBuilder::new()
.with_config(SessionConfig::new())
.with_runtime_env(runtime)
.with_default_features()
.with_query_planner(Arc::new(MyQueryPlanner {}))
.build();
let ctx = SessionContext::new_with_state(session_state);
let df = ctx.sql("SELECT 1").await?;
df.collect().await.expect_err("query not supported");
Ok(())
}
#[tokio::test]
async fn disabled_default_catalog_and_schema() -> Result<()> {
let ctx = SessionContext::new_with_config(
SessionConfig::new().with_create_default_catalog_and_schema(false),
);
assert!(matches!(
ctx.register_table("test", test::table_with_sequence(1, 1)?),
Err(DataFusionError::Plan(_))
));
assert!(matches!(
ctx.sql("select * from datafusion.public.test").await,
Err(DataFusionError::Plan(_))
));
Ok(())
}
#[tokio::test]
async fn custom_catalog_and_schema() {
let config = SessionConfig::new()
.with_create_default_catalog_and_schema(true)
.with_default_catalog_and_schema("my_catalog", "my_schema");
catalog_and_schema_test(config).await;
}
#[tokio::test]
async fn custom_catalog_and_schema_no_default() {
let config = SessionConfig::new()
.with_create_default_catalog_and_schema(false)
.with_default_catalog_and_schema("my_catalog", "my_schema");
catalog_and_schema_test(config).await;
}
#[tokio::test]
async fn custom_catalog_and_schema_and_information_schema() {
let config = SessionConfig::new()
.with_create_default_catalog_and_schema(true)
.with_information_schema(true)
.with_default_catalog_and_schema("my_catalog", "my_schema");
catalog_and_schema_test(config).await;
}
async fn catalog_and_schema_test(config: SessionConfig) {
let ctx = SessionContext::new_with_config(config);
let catalog = MemoryCatalogProvider::new();
let schema = MemorySchemaProvider::new();
schema
.register_table("test".to_owned(), test::table_with_sequence(1, 1).unwrap())
.unwrap();
catalog
.register_schema("my_schema", Arc::new(schema))
.unwrap();
ctx.register_catalog("my_catalog", Arc::new(catalog));
for table_ref in &["my_catalog.my_schema.test", "my_schema.test", "test"] {
let result = plan_and_collect(
&ctx,
&format!("SELECT COUNT(*) AS count FROM {table_ref}"),
)
.await
.unwrap();
let expected = [
"+-------+",
"| count |",
"+-------+",
"| 1 |",
"+-------+",
];
assert_batches_eq!(expected, &result);
}
}
#[tokio::test]
async fn cross_catalog_access() -> Result<()> {
let ctx = SessionContext::new();
let catalog_a = MemoryCatalogProvider::new();
let schema_a = MemorySchemaProvider::new();
schema_a
.register_table("table_a".to_owned(), test::table_with_sequence(1, 1)?)?;
catalog_a.register_schema("schema_a", Arc::new(schema_a))?;
ctx.register_catalog("catalog_a", Arc::new(catalog_a));
let catalog_b = MemoryCatalogProvider::new();
let schema_b = MemorySchemaProvider::new();
schema_b
.register_table("table_b".to_owned(), test::table_with_sequence(1, 2)?)?;
catalog_b.register_schema("schema_b", Arc::new(schema_b))?;
ctx.register_catalog("catalog_b", Arc::new(catalog_b));
let result = plan_and_collect(
&ctx,
"SELECT cat, SUM(i) AS total FROM (
SELECT i, 'a' AS cat FROM catalog_a.schema_a.table_a
UNION ALL
SELECT i, 'b' AS cat FROM catalog_b.schema_b.table_b
) AS all
GROUP BY cat
ORDER BY cat
",
)
.await?;
let expected = [
"+-----+-------+",
"| cat | total |",
"+-----+-------+",
"| a | 1 |",
"| b | 3 |",
"+-----+-------+",
];
assert_batches_eq!(expected, &result);
Ok(())
}
#[tokio::test]
async fn catalogs_not_leaked() {
// the information schema used to introduce cyclic Arcs
let ctx = SessionContext::new_with_config(
SessionConfig::new().with_information_schema(true),
);
// register a single catalog
let catalog = Arc::new(MemoryCatalogProvider::new());
let catalog_weak = Arc::downgrade(&catalog);
ctx.register_catalog("my_catalog", catalog);
let catalog_list_weak = {
let state = ctx.state.read();
Arc::downgrade(state.catalog_list())
};
drop(ctx);
assert_eq!(Weak::strong_count(&catalog_list_weak), 0);
assert_eq!(Weak::strong_count(&catalog_weak), 0);
}
#[tokio::test]
async fn sql_create_schema() -> Result<()> {
// the information schema used to introduce cyclic Arcs
let ctx = SessionContext::new_with_config(
SessionConfig::new().with_information_schema(true),
);
// Create schema
ctx.sql("CREATE SCHEMA abc").await?.collect().await?;
// Add table to schema
ctx.sql("CREATE TABLE abc.y AS VALUES (1,2,3)")
.await?
.collect()
.await?;
// Check table exists in schema
let results = ctx.sql("SELECT * FROM information_schema.tables WHERE table_schema='abc' AND table_name = 'y'").await.unwrap().collect().await.unwrap();
assert_eq!(results[0].num_rows(), 1);
Ok(())
}
#[tokio::test]
async fn sql_create_catalog() -> Result<()> {
// the information schema used to introduce cyclic Arcs
let ctx = SessionContext::new_with_config(
SessionConfig::new().with_information_schema(true),
);
// Create catalog
ctx.sql("CREATE DATABASE test").await?.collect().await?;
// Create schema
ctx.sql("CREATE SCHEMA test.abc").await?.collect().await?;
// Add table to schema
ctx.sql("CREATE TABLE test.abc.y AS VALUES (1,2,3)")
.await?
.collect()
.await?;
// Check table exists in schema
let results = ctx.sql("SELECT * FROM information_schema.tables WHERE table_catalog='test' AND table_schema='abc' AND table_name = 'y'").await.unwrap().collect().await.unwrap();
assert_eq!(results[0].num_rows(), 1);
Ok(())
}
struct MyPhysicalPlanner {}
#[async_trait]
impl PhysicalPlanner for MyPhysicalPlanner {
async fn create_physical_plan(
&self,
_logical_plan: &LogicalPlan,
_session_state: &SessionState,
) -> Result<Arc<dyn ExecutionPlan>> {
not_impl_err!("query not supported")
}
fn create_physical_expr(
&self,
_expr: &Expr,
_input_dfschema: &crate::common::DFSchema,
_session_state: &SessionState,
) -> Result<Arc<dyn crate::physical_plan::PhysicalExpr>> {
unimplemented!()
}
}
struct MyQueryPlanner {}
#[async_trait]
impl QueryPlanner for MyQueryPlanner {
async fn create_physical_plan(
&self,
logical_plan: &LogicalPlan,
session_state: &SessionState,
) -> Result<Arc<dyn ExecutionPlan>> {
let physical_planner = MyPhysicalPlanner {};
physical_planner
.create_physical_plan(logical_plan, session_state)
.await
}
}
/// Generate a partitioned CSV file and register it with an execution context
async fn create_ctx(
tmp_dir: &TempDir,
partition_count: usize,
) -> Result<SessionContext> {
let ctx = SessionContext::new_with_config(
SessionConfig::new().with_target_partitions(8),
);
let schema = populate_csv_partitions(tmp_dir, partition_count, ".csv")?;
// register csv file with the execution context
ctx.register_csv(
"test",
tmp_dir.path().to_str().unwrap(),
CsvReadOptions::new().schema(&schema),
)
.await?;
Ok(ctx)
}
}