pub struct Repartition {}
Expand description

Optimizer that introduces repartition to introduce more parallelism in the plan

For example, given an input such as:

┌─────────────────────────────────┐
│                                 │
│          ExecutionPlan          │
│                                 │
└─────────────────────────────────┘
            ▲         ▲
            │         │
      ┌─────┘         └─────┐
      │                     │
      │                     │
      │                     │
┌───────────┐         ┌───────────┐
│           │         │           │
│ batch A1  │         │ batch B1  │
│           │         │           │
├───────────┤         ├───────────┤
│           │         │           │
│ batch A2  │         │ batch B2  │
│           │         │           │
├───────────┤         ├───────────┤
│           │         │           │
│ batch A3  │         │ batch B3  │
│           │         │           │
└───────────┘         └───────────┘

     Input                 Input
       A                     B

This optimizer will attempt to add a RepartitionExec to increase the parallelism (to 3 in this case)

    ┌─────────────────────────────────┐
    │                                 │
    │          ExecutionPlan          │
    │                                 │
    └─────────────────────────────────┘
              ▲      ▲       ▲            Input now has 3
              │      │       │             partitions
      ┌───────┘      │       └───────┐
      │              │               │
      │              │               │
┌───────────┐  ┌───────────┐   ┌───────────┐
│           │  │           │   │           │
│ batch A1  │  │ batch A3  │   │ batch B3  │
│           │  │           │   │           │
├───────────┤  ├───────────┤   ├───────────┤
│           │  │           │   │           │
│ batch B2  │  │ batch B1  │   │ batch A2  │
│           │  │           │   │           │
└───────────┘  └───────────┘   └───────────┘
      ▲              ▲               ▲
      │              │               │
      └─────────┐    │    ┌──────────┘
                │    │    │
                │    │    │
    ┌─────────────────────────────────┐   batches are
    │       RepartitionExec(3)        │   repartitioned
    │           RoundRobin            │
    │                                 │
    └─────────────────────────────────┘
                ▲         ▲
                │         │
          ┌─────┘         └─────┐
          │                     │
          │                     │
          │                     │
    ┌───────────┐         ┌───────────┐
    │           │         │           │
    │ batch A1  │         │ batch B1  │
    │           │         │           │
    ├───────────┤         ├───────────┤
    │           │         │           │
    │ batch A2  │         │ batch B2  │
    │           │         │           │
    ├───────────┤         ├───────────┤
    │           │         │           │
    │ batch A3  │         │ batch B3  │
    │           │         │           │
    └───────────┘         └───────────┘


     Input                 Input
       A                     B

Implementations§

source§

impl Repartition

source

pub fn new() -> Self

Trait Implementations§

source§

impl Default for Repartition

source§

fn default() -> Repartition

Returns the “default value” for a type. Read more
source§

impl PhysicalOptimizerRule for Repartition

source§

fn optimize( &self, plan: Arc<dyn ExecutionPlan>, config: &ConfigOptions ) -> Result<Arc<dyn ExecutionPlan>>

Rewrite plan to an optimized form
source§

fn name(&self) -> &str

A human readable name for this optimizer rule
source§

fn schema_check(&self) -> bool

A flag to indicate whether the physical planner should valid the rule will not change the schema of the plan after the rewriting. Some of the optimization rules might change the nullable properties of the schema and should disable the schema check.

Auto Trait Implementations§

Blanket Implementations§

source§

impl<T> Any for Twhere T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<T> Borrow<T> for Twhere T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for Twhere T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

source§

impl<T, U> Into<U> for Twhere U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<T> Same<T> for T

§

type Output = T

Should always be Self
source§

impl<T, U> TryFrom<U> for Twhere U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for Twhere U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
§

impl<V, T> VZip<V> for Twhere V: MultiLane<T>,

§

fn vzip(self) -> V

§

impl<T> Allocation for Twhere T: RefUnwindSafe + Send + Sync,