1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
//! SQL Utility Functions
use std::collections::HashMap;
use arrow_schema::{
DataType, DECIMAL128_MAX_PRECISION, DECIMAL256_MAX_PRECISION, DECIMAL_DEFAULT_SCALE,
};
use datafusion_common::tree_node::{
Transformed, TransformedResult, TreeNode, TreeNodeRecursion,
};
use datafusion_common::{
exec_err, internal_err, plan_err, Column, DataFusionError, Result, ScalarValue,
};
use datafusion_expr::builder::get_unnested_columns;
use datafusion_expr::expr::{Alias, GroupingSet, Unnest, WindowFunction};
use datafusion_expr::utils::{expr_as_column_expr, find_column_exprs};
use datafusion_expr::{expr_vec_fmt, Expr, ExprSchemable, LogicalPlan};
use sqlparser::ast::Ident;
/// Make a best-effort attempt at resolving all columns in the expression tree
pub(crate) fn resolve_columns(expr: &Expr, plan: &LogicalPlan) -> Result<Expr> {
expr.clone()
.transform_up(|nested_expr| {
match nested_expr {
Expr::Column(col) => {
let (qualifier, field) =
plan.schema().qualified_field_from_column(&col)?;
Ok(Transformed::yes(Expr::Column(Column::from((
qualifier, field,
)))))
}
_ => {
// keep recursing
Ok(Transformed::no(nested_expr))
}
}
})
.data()
}
/// Rebuilds an `Expr` as a projection on top of a collection of `Expr`'s.
///
/// For example, the expression `a + b < 1` would require, as input, the 2
/// individual columns, `a` and `b`. But, if the base expressions already
/// contain the `a + b` result, then that may be used in lieu of the `a` and
/// `b` columns.
///
/// This is useful in the context of a query like:
///
/// SELECT a + b < 1 ... GROUP BY a + b
///
/// where post-aggregation, `a + b` need not be a projection against the
/// individual columns `a` and `b`, but rather it is a projection against the
/// `a + b` found in the GROUP BY.
pub(crate) fn rebase_expr(
expr: &Expr,
base_exprs: &[Expr],
plan: &LogicalPlan,
) -> Result<Expr> {
expr.clone()
.transform_down(|nested_expr| {
if base_exprs.contains(&nested_expr) {
Ok(Transformed::yes(expr_as_column_expr(&nested_expr, plan)?))
} else {
Ok(Transformed::no(nested_expr))
}
})
.data()
}
/// Determines if the set of `Expr`'s are a valid projection on the input
/// `Expr::Column`'s.
pub(crate) fn check_columns_satisfy_exprs(
columns: &[Expr],
exprs: &[Expr],
message_prefix: &str,
) -> Result<()> {
columns.iter().try_for_each(|c| match c {
Expr::Column(_) => Ok(()),
_ => internal_err!("Expr::Column are required"),
})?;
let column_exprs = find_column_exprs(exprs);
for e in &column_exprs {
match e {
Expr::GroupingSet(GroupingSet::Rollup(exprs)) => {
for e in exprs {
check_column_satisfies_expr(columns, e, message_prefix)?;
}
}
Expr::GroupingSet(GroupingSet::Cube(exprs)) => {
for e in exprs {
check_column_satisfies_expr(columns, e, message_prefix)?;
}
}
Expr::GroupingSet(GroupingSet::GroupingSets(lists_of_exprs)) => {
for exprs in lists_of_exprs {
for e in exprs {
check_column_satisfies_expr(columns, e, message_prefix)?;
}
}
}
_ => check_column_satisfies_expr(columns, e, message_prefix)?,
}
}
Ok(())
}
fn check_column_satisfies_expr(
columns: &[Expr],
expr: &Expr,
message_prefix: &str,
) -> Result<()> {
if !columns.contains(expr) {
return plan_err!(
"{}: Expression {} could not be resolved from available columns: {}",
message_prefix,
expr,
expr_vec_fmt!(columns)
);
}
Ok(())
}
/// Returns mapping of each alias (`String`) to the expression (`Expr`) it is
/// aliasing.
pub(crate) fn extract_aliases(exprs: &[Expr]) -> HashMap<String, Expr> {
exprs
.iter()
.filter_map(|expr| match expr {
Expr::Alias(Alias { expr, name, .. }) => Some((name.clone(), *expr.clone())),
_ => None,
})
.collect::<HashMap<String, Expr>>()
}
/// Given an expression that's literal int encoding position, lookup the corresponding expression
/// in the select_exprs list, if the index is within the bounds and it is indeed a position literal,
/// otherwise, returns planning error.
/// If input expression is not an int literal, returns expression as-is.
pub(crate) fn resolve_positions_to_exprs(
expr: Expr,
select_exprs: &[Expr],
) -> Result<Expr> {
match expr {
// sql_expr_to_logical_expr maps number to i64
// https://github.com/apache/datafusion/blob/8d175c759e17190980f270b5894348dc4cff9bbf/datafusion/src/sql/planner.rs#L882-L887
Expr::Literal(ScalarValue::Int64(Some(position)))
if position > 0_i64 && position <= select_exprs.len() as i64 =>
{
let index = (position - 1) as usize;
let select_expr = &select_exprs[index];
Ok(match select_expr {
Expr::Alias(Alias { expr, .. }) => *expr.clone(),
_ => select_expr.clone(),
})
}
Expr::Literal(ScalarValue::Int64(Some(position))) => plan_err!(
"Cannot find column with position {} in SELECT clause. Valid columns: 1 to {}",
position, select_exprs.len()
),
_ => Ok(expr),
}
}
/// Rebuilds an `Expr` with columns that refer to aliases replaced by the
/// alias' underlying `Expr`.
pub(crate) fn resolve_aliases_to_exprs(
expr: Expr,
aliases: &HashMap<String, Expr>,
) -> Result<Expr> {
expr.transform_up(|nested_expr| match nested_expr {
Expr::Column(c) if c.relation.is_none() => {
if let Some(aliased_expr) = aliases.get(&c.name) {
Ok(Transformed::yes(aliased_expr.clone()))
} else {
Ok(Transformed::no(Expr::Column(c)))
}
}
_ => Ok(Transformed::no(nested_expr)),
})
.data()
}
/// given a slice of window expressions sharing the same sort key, find their common partition
/// keys.
pub fn window_expr_common_partition_keys(window_exprs: &[Expr]) -> Result<&[Expr]> {
let all_partition_keys = window_exprs
.iter()
.map(|expr| match expr {
Expr::WindowFunction(WindowFunction { partition_by, .. }) => Ok(partition_by),
Expr::Alias(Alias { expr, .. }) => match expr.as_ref() {
Expr::WindowFunction(WindowFunction { partition_by, .. }) => {
Ok(partition_by)
}
expr => exec_err!("Impossibly got non-window expr {expr:?}"),
},
expr => exec_err!("Impossibly got non-window expr {expr:?}"),
})
.collect::<Result<Vec<_>>>()?;
let result = all_partition_keys
.iter()
.min_by_key(|s| s.len())
.ok_or_else(|| {
DataFusionError::Execution("No window expressions found".to_owned())
})?;
Ok(result)
}
/// Returns a validated `DataType` for the specified precision and
/// scale
pub(crate) fn make_decimal_type(
precision: Option<u64>,
scale: Option<u64>,
) -> Result<DataType> {
// postgres like behavior
let (precision, scale) = match (precision, scale) {
(Some(p), Some(s)) => (p as u8, s as i8),
(Some(p), None) => (p as u8, 0),
(None, Some(_)) => {
return plan_err!("Cannot specify only scale for decimal data type")
}
(None, None) => (DECIMAL128_MAX_PRECISION, DECIMAL_DEFAULT_SCALE),
};
if precision == 0
|| precision > DECIMAL256_MAX_PRECISION
|| scale.unsigned_abs() > precision
{
plan_err!(
"Decimal(precision = {precision}, scale = {scale}) should satisfy `0 < precision <= 76`, and `scale <= precision`."
)
} else if precision > DECIMAL128_MAX_PRECISION
&& precision <= DECIMAL256_MAX_PRECISION
{
Ok(DataType::Decimal256(precision, scale))
} else {
Ok(DataType::Decimal128(precision, scale))
}
}
// Normalize an owned identifier to a lowercase string unless the identifier is quoted.
pub(crate) fn normalize_ident(id: Ident) -> String {
match id.quote_style {
Some(_) => id.value,
None => id.value.to_ascii_lowercase(),
}
}
/// The context is we want to rewrite unnest() into InnerProjection->Unnest->OuterProjection
/// Given an expression which contains unnest expr as one of its children,
/// Try transform depends on unnest type
/// - For list column: unnest(col) with type list -> unnest(col) with type list::item
/// - For struct column: unnest(struct(field1, field2)) -> unnest(struct).field1, unnest(struct).field2
/// The transformed exprs will be used in the outer projection
/// If along the path from root to bottom, there are multiple unnest expressions, the transformation
/// is done only for the bottom expression
pub(crate) fn transform_bottom_unnest(
input: &LogicalPlan,
unnest_placeholder_columns: &mut Vec<String>,
inner_projection_exprs: &mut Vec<Expr>,
original_expr: &Expr,
) -> Result<Vec<Expr>> {
let mut transform =
|unnest_expr: &Expr, expr_in_unnest: &Expr| -> Result<Vec<Expr>> {
// Full context, we are trying to plan the execution as InnerProjection->Unnest->OuterProjection
// inside unnest execution, each column inside the inner projection
// will be transformed into new columns. Thus we need to keep track of these placeholding column names
let placeholder_name = unnest_expr.display_name()?;
unnest_placeholder_columns.push(placeholder_name.clone());
// Add alias for the argument expression, to avoid naming conflicts
// with other expressions in the select list. For example: `select unnest(col1), col1 from t`.
// this extra projection is used to unnest transforming
inner_projection_exprs
.push(expr_in_unnest.clone().alias(placeholder_name.clone()));
let schema = input.schema();
let (data_type, _) = expr_in_unnest.data_type_and_nullable(schema)?;
let outer_projection_columns =
get_unnested_columns(&placeholder_name, &data_type)?;
let expr = outer_projection_columns
.iter()
.map(|col| Expr::Column(col.0.clone()))
.collect::<Vec<_>>();
Ok(expr)
};
// This transformation is only done for list unnest
// struct unnest is done at the root level, and at the later stage
// because the syntax of TreeNode only support transform into 1 Expr, while
// Unnest struct will be transformed into multiple Exprs
// TODO: This can be resolved after this issue is resolved: https://github.com/apache/datafusion/issues/10102
//
// The transformation looks like:
// - unnest(array_col) will be transformed into unnest(array_col)
// - unnest(array_col) + 1 will be transformed into unnest(array_col) + 1
let Transformed {
data: transformed_expr,
transformed,
tnr: _,
} = original_expr.clone().transform_up(|expr: Expr| {
let is_root_expr = &expr == original_expr;
// Root expr is transformed separately
if is_root_expr {
return Ok(Transformed::no(expr));
}
if let Expr::Unnest(Unnest { expr: ref arg }) = expr {
let (data_type, _) = arg.data_type_and_nullable(input.schema())?;
if let DataType::Struct(_) = data_type {
return internal_err!("unnest on struct can ony be applied at the root level of select expression");
}
let mut transformed_exprs = transform(&expr, arg)?;
// root_expr.push(transformed_exprs[0].clone());
Ok(Transformed::new(
transformed_exprs.swap_remove(0),
true,
TreeNodeRecursion::Stop,
))
} else {
Ok(Transformed::no(expr))
}
})?;
if !transformed {
// Because root expr need to transform separately
// unnest struct is only possible here
// The transformation looks like
// - unnest(struct_col) will be transformed into unnest(struct_col).field1, unnest(struct_col).field2
if let Expr::Unnest(Unnest { expr: ref arg }) = transformed_expr {
return transform(&transformed_expr, arg);
}
if matches!(&transformed_expr, Expr::Column(_)) {
inner_projection_exprs.push(transformed_expr.clone());
Ok(vec![transformed_expr])
} else {
// We need to evaluate the expr in the inner projection,
// outer projection just select its name
let column_name = transformed_expr.display_name()?;
inner_projection_exprs.push(transformed_expr);
Ok(vec![Expr::Column(Column::from_name(column_name))])
}
} else {
Ok(vec![transformed_expr])
}
}
// write test for recursive_transform_unnest
#[cfg(test)]
mod tests {
use std::{ops::Add, sync::Arc};
use arrow::datatypes::{DataType as ArrowDataType, Field, Schema};
use arrow_schema::Fields;
use datafusion_common::{DFSchema, Result};
use datafusion_expr::{col, lit, unnest, EmptyRelation, LogicalPlan};
use datafusion_functions::core::expr_ext::FieldAccessor;
use datafusion_functions_aggregate::expr_fn::count;
use crate::utils::{resolve_positions_to_exprs, transform_bottom_unnest};
#[test]
fn test_transform_bottom_unnest() -> Result<()> {
let schema = Schema::new(vec![
Field::new(
"struct_col",
ArrowDataType::Struct(Fields::from(vec![
Field::new("field1", ArrowDataType::Int32, false),
Field::new("field2", ArrowDataType::Int32, false),
])),
false,
),
Field::new(
"array_col",
ArrowDataType::List(Arc::new(Field::new(
"item",
ArrowDataType::Int64,
true,
))),
true,
),
Field::new("int_col", ArrowDataType::Int32, false),
]);
let dfschema = DFSchema::try_from(schema)?;
let input = LogicalPlan::EmptyRelation(EmptyRelation {
produce_one_row: false,
schema: Arc::new(dfschema),
});
let mut unnest_placeholder_columns = vec![];
let mut inner_projection_exprs = vec![];
// unnest(struct_col)
let original_expr = unnest(col("struct_col"));
let transformed_exprs = transform_bottom_unnest(
&input,
&mut unnest_placeholder_columns,
&mut inner_projection_exprs,
&original_expr,
)?;
assert_eq!(
transformed_exprs,
vec![
col("unnest(struct_col).field1"),
col("unnest(struct_col).field2"),
]
);
assert_eq!(unnest_placeholder_columns, vec!["unnest(struct_col)"]);
// still reference struct_col in original schema but with alias,
// to avoid colliding with the projection on the column itself if any
assert_eq!(
inner_projection_exprs,
vec![col("struct_col").alias("unnest(struct_col)"),]
);
// unnest(array_col) + 1
let original_expr = unnest(col("array_col")).add(lit(1i64));
let transformed_exprs = transform_bottom_unnest(
&input,
&mut unnest_placeholder_columns,
&mut inner_projection_exprs,
&original_expr,
)?;
assert_eq!(
unnest_placeholder_columns,
vec!["unnest(struct_col)", "unnest(array_col)"]
);
// only transform the unnest children
assert_eq!(
transformed_exprs,
vec![col("unnest(array_col)").add(lit(1i64))]
);
// keep appending to the current vector
// still reference array_col in original schema but with alias,
// to avoid colliding with the projection on the column itself if any
assert_eq!(
inner_projection_exprs,
vec![
col("struct_col").alias("unnest(struct_col)"),
col("array_col").alias("unnest(array_col)")
]
);
// a nested structure struct[[]]
let schema = Schema::new(vec![
Field::new(
"struct_col", // {array_col: [1,2,3]}
ArrowDataType::Struct(Fields::from(vec![Field::new(
"matrix",
ArrowDataType::List(Arc::new(Field::new(
"matrix_row",
ArrowDataType::List(Arc::new(Field::new(
"item",
ArrowDataType::Int64,
true,
))),
true,
))),
true,
)])),
false,
),
Field::new("int_col", ArrowDataType::Int32, false),
]);
let dfschema = DFSchema::try_from(schema)?;
let input = LogicalPlan::EmptyRelation(EmptyRelation {
produce_one_row: false,
schema: Arc::new(dfschema),
});
let mut unnest_placeholder_columns = vec![];
let mut inner_projection_exprs = vec![];
// An expr with multiple unnest
let original_expr = unnest(unnest(col("struct_col").field("matrix")));
let transformed_exprs = transform_bottom_unnest(
&input,
&mut unnest_placeholder_columns,
&mut inner_projection_exprs,
&original_expr,
)?;
// Only the inner most/ bottom most unnest is transformed
assert_eq!(
transformed_exprs,
vec![unnest(col("unnest(struct_col[matrix])"))]
);
assert_eq!(
unnest_placeholder_columns,
vec!["unnest(struct_col[matrix])"]
);
assert_eq!(
inner_projection_exprs,
vec![col("struct_col")
.field("matrix")
.alias("unnest(struct_col[matrix])"),]
);
Ok(())
}
#[test]
fn test_resolve_positions_to_exprs() -> Result<()> {
let select_exprs = vec![col("c1"), col("c2"), count(lit(1))];
// Assert 1 resolved as first column in select list
let resolved = resolve_positions_to_exprs(lit(1i64), &select_exprs)?;
assert_eq!(resolved, col("c1"));
// Assert error if index out of select clause bounds
let resolved = resolve_positions_to_exprs(lit(-1i64), &select_exprs);
assert!(resolved.is_err_and(|e| e.message().contains(
"Cannot find column with position -1 in SELECT clause. Valid columns: 1 to 3"
)));
let resolved = resolve_positions_to_exprs(lit(5i64), &select_exprs);
assert!(resolved.is_err_and(|e| e.message().contains(
"Cannot find column with position 5 in SELECT clause. Valid columns: 1 to 3"
)));
// Assert expression returned as-is
let resolved = resolve_positions_to_exprs(lit("text"), &select_exprs)?;
assert_eq!(resolved, lit("text"));
let resolved = resolve_positions_to_exprs(col("fake"), &select_exprs)?;
assert_eq!(resolved, col("fake"));
Ok(())
}
}