datafusion_remote_table/connection/
sqlite.rs

1use crate::connection::{RemoteDbType, projections_contains};
2use crate::{
3    Connection, ConnectionOptions, DFResult, Pool, RemoteField, RemoteSchema, RemoteSchemaRef,
4    RemoteType, SqliteType,
5};
6use datafusion::arrow::array::{
7    ArrayBuilder, ArrayRef, BinaryBuilder, Float64Builder, Int32Builder, Int64Builder, NullBuilder,
8    RecordBatch, StringBuilder, make_builder,
9};
10use datafusion::arrow::datatypes::{DataType, SchemaRef};
11use datafusion::common::{DataFusionError, project_schema};
12use datafusion::execution::SendableRecordBatchStream;
13use datafusion::physical_plan::stream::RecordBatchStreamAdapter;
14use datafusion::prelude::Expr;
15use derive_getters::Getters;
16use derive_with::With;
17use itertools::Itertools;
18use rusqlite::types::ValueRef;
19use rusqlite::{Column, Row, Rows};
20use std::collections::HashMap;
21use std::path::PathBuf;
22use std::sync::Arc;
23
24#[derive(Debug, Clone, With, Getters)]
25pub struct SqliteConnectionOptions {
26    pub path: PathBuf,
27    pub stream_chunk_size: usize,
28}
29
30impl SqliteConnectionOptions {
31    pub fn new(path: PathBuf) -> Self {
32        Self {
33            path,
34            stream_chunk_size: 2048,
35        }
36    }
37}
38
39#[derive(Debug)]
40pub struct SqlitePool {
41    pool: tokio_rusqlite::Connection,
42}
43
44pub async fn connect_sqlite(options: &SqliteConnectionOptions) -> DFResult<SqlitePool> {
45    let pool = tokio_rusqlite::Connection::open(&options.path)
46        .await
47        .map_err(|e| {
48            DataFusionError::Execution(format!("Failed to open sqlite connection: {e:?}"))
49        })?;
50    Ok(SqlitePool { pool })
51}
52
53#[async_trait::async_trait]
54impl Pool for SqlitePool {
55    async fn get(&self) -> DFResult<Arc<dyn Connection>> {
56        let conn = self.pool.clone();
57        Ok(Arc::new(SqliteConnection { conn }))
58    }
59}
60
61#[derive(Debug)]
62pub struct SqliteConnection {
63    conn: tokio_rusqlite::Connection,
64}
65
66#[async_trait::async_trait]
67impl Connection for SqliteConnection {
68    async fn infer_schema(&self, sql: &str) -> DFResult<RemoteSchemaRef> {
69        let sql = RemoteDbType::Sqlite.query_limit_1(sql)?;
70        self.conn
71            .call(move |conn| {
72                let mut stmt = conn.prepare(&sql)?;
73                let columns: Vec<OwnedColumn> =
74                    stmt.columns().iter().map(sqlite_col_to_owned_col).collect();
75                let rows = stmt.query([])?;
76
77                let remote_schema = Arc::new(
78                    build_remote_schema(columns.as_slice(), rows)
79                        .map_err(|e| tokio_rusqlite::Error::Other(Box::new(e)))?,
80                );
81                Ok(remote_schema)
82            })
83            .await
84            .map_err(|e| DataFusionError::Execution(format!("Failed to infer schema: {e:?}")))
85    }
86
87    async fn query(
88        &self,
89        conn_options: &ConnectionOptions,
90        sql: &str,
91        table_schema: SchemaRef,
92        projection: Option<&Vec<usize>>,
93        filters: &[Expr],
94        limit: Option<usize>,
95    ) -> DFResult<SendableRecordBatchStream> {
96        let projected_schema = project_schema(&table_schema, projection)?;
97        let sql = RemoteDbType::Sqlite.try_rewrite_query(sql, filters, limit)?;
98        let conn = self.conn.clone();
99        let projection = projection.cloned();
100        let limit = conn_options.stream_chunk_size();
101        let stream = async_stream::stream! {
102            let mut offset = 0;
103            loop {
104                let sql = format!("SELECT * FROM ({sql}) LIMIT {limit} OFFSET {offset}");
105                let sql_clone = sql.clone();
106                let conn = conn.clone();
107                let projection = projection.clone();
108                let table_schema = table_schema.clone();
109                let (batch, is_empty) = conn
110                    .call(move |conn| {
111                        let mut stmt = conn.prepare(&sql)?;
112                        let columns: Vec<OwnedColumn> =
113                            stmt.columns().iter().map(sqlite_col_to_owned_col).collect();
114                        let rows = stmt.query([])?;
115
116                        rows_to_batch(rows, &table_schema, columns, projection.as_ref())
117                            .map_err(|e| tokio_rusqlite::Error::Other(e.into()))
118                })
119                .await
120                .map_err(|e| {
121                    DataFusionError::Execution(format!(
122                        "Failed to execute query {sql_clone} on sqlite: {e:?}"
123                    ))
124                })?;
125                if is_empty {
126                    break;
127                }
128                yield Ok(batch);
129                offset += limit;
130            }
131        };
132        Ok(Box::pin(RecordBatchStreamAdapter::new(
133            projected_schema,
134            stream,
135        )))
136    }
137}
138
139#[derive(Debug)]
140struct OwnedColumn {
141    name: String,
142    decl_type: Option<String>,
143}
144
145fn sqlite_col_to_owned_col(sqlite_col: &Column) -> OwnedColumn {
146    OwnedColumn {
147        name: sqlite_col.name().to_string(),
148        decl_type: sqlite_col.decl_type().map(|x| x.to_string()),
149    }
150}
151
152fn decl_type_to_remote_type(decl_type: &str) -> DFResult<SqliteType> {
153    if ["tinyint", "smallint", "int", "integer", "bigint"].contains(&decl_type) {
154        return Ok(SqliteType::Integer);
155    }
156    if ["real", "float", "double"].contains(&decl_type) {
157        return Ok(SqliteType::Real);
158    }
159    if decl_type.starts_with("real") {
160        return Ok(SqliteType::Real);
161    }
162    if ["text", "varchar", "char", "string"].contains(&decl_type) {
163        return Ok(SqliteType::Text);
164    }
165    if decl_type.starts_with("char")
166        || decl_type.starts_with("varchar")
167        || decl_type.starts_with("text")
168    {
169        return Ok(SqliteType::Text);
170    }
171    if ["binary", "varbinary", "tinyblob", "blob"].contains(&decl_type) {
172        return Ok(SqliteType::Blob);
173    }
174    if decl_type.starts_with("binary") || decl_type.starts_with("varbinary") {
175        return Ok(SqliteType::Blob);
176    }
177    Err(DataFusionError::NotImplemented(format!(
178        "Unsupported sqlite decl type: {decl_type}",
179    )))
180}
181
182fn build_remote_schema(columns: &[OwnedColumn], mut rows: Rows) -> DFResult<RemoteSchema> {
183    let mut remote_field_map = HashMap::with_capacity(columns.len());
184    let mut unknown_cols = vec![];
185    for (col_idx, col) in columns.iter().enumerate() {
186        if let Some(decl_type) = &col.decl_type {
187            let remote_type =
188                RemoteType::Sqlite(decl_type_to_remote_type(&decl_type.to_ascii_lowercase())?);
189            remote_field_map.insert(col_idx, RemoteField::new(&col.name, remote_type, true));
190        } else {
191            unknown_cols.push(col_idx);
192        }
193    }
194
195    if !unknown_cols.is_empty() {
196        while let Some(row) = rows.next().map_err(|e| {
197            DataFusionError::Execution(format!("Failed to get next row from sqlite: {e:?}"))
198        })? {
199            let mut to_be_removed = vec![];
200            for col_idx in unknown_cols.iter() {
201                let value_ref = row.get_ref(*col_idx).map_err(|e| {
202                    DataFusionError::Execution(format!(
203                        "Failed to get value ref for column {col_idx}: {e:?}"
204                    ))
205                })?;
206                match value_ref {
207                    ValueRef::Null => {}
208                    ValueRef::Integer(_) => {
209                        remote_field_map.insert(
210                            *col_idx,
211                            RemoteField::new(
212                                columns[*col_idx].name.clone(),
213                                RemoteType::Sqlite(SqliteType::Integer),
214                                true,
215                            ),
216                        );
217                        to_be_removed.push(*col_idx);
218                    }
219                    ValueRef::Real(_) => {
220                        remote_field_map.insert(
221                            *col_idx,
222                            RemoteField::new(
223                                columns[*col_idx].name.clone(),
224                                RemoteType::Sqlite(SqliteType::Real),
225                                true,
226                            ),
227                        );
228                        to_be_removed.push(*col_idx);
229                    }
230                    ValueRef::Text(_) => {
231                        remote_field_map.insert(
232                            *col_idx,
233                            RemoteField::new(
234                                columns[*col_idx].name.clone(),
235                                RemoteType::Sqlite(SqliteType::Text),
236                                true,
237                            ),
238                        );
239                        to_be_removed.push(*col_idx);
240                    }
241                    ValueRef::Blob(_) => {
242                        remote_field_map.insert(
243                            *col_idx,
244                            RemoteField::new(
245                                columns[*col_idx].name.clone(),
246                                RemoteType::Sqlite(SqliteType::Blob),
247                                true,
248                            ),
249                        );
250                        to_be_removed.push(*col_idx);
251                    }
252                }
253            }
254            for col_idx in to_be_removed.iter() {
255                unknown_cols.retain(|&x| x != *col_idx);
256            }
257            if unknown_cols.is_empty() {
258                break;
259            }
260        }
261    }
262
263    if !unknown_cols.is_empty() {
264        return Err(DataFusionError::NotImplemented(format!(
265            "Failed to infer sqlite decl type for columns: {unknown_cols:?}"
266        )));
267    }
268    let remote_fields = remote_field_map
269        .into_iter()
270        .sorted_by_key(|entry| entry.0)
271        .map(|entry| entry.1)
272        .collect::<Vec<_>>();
273    Ok(RemoteSchema::new(remote_fields))
274}
275
276fn rows_to_batch(
277    mut rows: Rows,
278    table_schema: &SchemaRef,
279    columns: Vec<OwnedColumn>,
280    projection: Option<&Vec<usize>>,
281) -> DFResult<(RecordBatch, bool)> {
282    let projected_schema = project_schema(table_schema, projection)?;
283    let mut array_builders = vec![];
284    for field in table_schema.fields() {
285        let builder = make_builder(field.data_type(), 1000);
286        array_builders.push(builder);
287    }
288
289    let mut is_empty = true;
290    while let Some(row) = rows.next().map_err(|e| {
291        DataFusionError::Execution(format!("Failed to get next row from sqlite: {e:?}"))
292    })? {
293        is_empty = false;
294        append_rows_to_array_builders(
295            row,
296            table_schema,
297            &columns,
298            projection,
299            array_builders.as_mut_slice(),
300        )?;
301    }
302
303    let projected_columns = array_builders
304        .into_iter()
305        .enumerate()
306        .filter(|(idx, _)| projections_contains(projection, *idx))
307        .map(|(_, mut builder)| builder.finish())
308        .collect::<Vec<ArrayRef>>();
309    Ok((
310        RecordBatch::try_new(projected_schema, projected_columns)?,
311        is_empty,
312    ))
313}
314
315macro_rules! handle_primitive_type {
316    ($builder:expr, $field:expr, $col:expr, $builder_ty:ty, $value_ty:ty, $row:expr, $index:expr) => {{
317        let builder = $builder
318            .as_any_mut()
319            .downcast_mut::<$builder_ty>()
320            .unwrap_or_else(|| {
321                panic!(
322                    "Failed to downcast builder to {} for {:?} and {:?}",
323                    stringify!($builder_ty),
324                    $field,
325                    $col
326                )
327            });
328
329        let v: Option<$value_ty> = $row.get($index).map_err(|e| {
330            DataFusionError::Execution(format!(
331                "Failed to get optional {} value for {:?} and {:?}: {e:?}",
332                stringify!($value_ty),
333                $field,
334                $col
335            ))
336        })?;
337
338        match v {
339            Some(v) => builder.append_value(v),
340            None => builder.append_null(),
341        }
342    }};
343}
344
345fn append_rows_to_array_builders(
346    row: &Row,
347    table_schema: &SchemaRef,
348    columns: &[OwnedColumn],
349    projection: Option<&Vec<usize>>,
350    array_builders: &mut [Box<dyn ArrayBuilder>],
351) -> DFResult<()> {
352    for (idx, field) in table_schema.fields.iter().enumerate() {
353        if !projections_contains(projection, idx) {
354            continue;
355        }
356        let builder = &mut array_builders[idx];
357        let col = columns.get(idx);
358        match field.data_type() {
359            DataType::Null => {
360                let builder = builder
361                    .as_any_mut()
362                    .downcast_mut::<NullBuilder>()
363                    .expect("Failed to downcast builder to NullBuilder");
364                builder.append_null();
365            }
366            DataType::Int32 => {
367                handle_primitive_type!(builder, field, col, Int32Builder, i32, row, idx);
368            }
369            DataType::Int64 => {
370                handle_primitive_type!(builder, field, col, Int64Builder, i64, row, idx);
371            }
372            DataType::Float64 => {
373                handle_primitive_type!(builder, field, col, Float64Builder, f64, row, idx);
374            }
375            DataType::Utf8 => {
376                handle_primitive_type!(builder, field, col, StringBuilder, String, row, idx);
377            }
378            DataType::Binary => {
379                handle_primitive_type!(builder, field, col, BinaryBuilder, Vec<u8>, row, idx);
380            }
381            _ => {
382                return Err(DataFusionError::NotImplemented(format!(
383                    "Unsupported data type {:?} for col: {:?}",
384                    field.data_type(),
385                    col
386                )));
387            }
388        }
389    }
390    Ok(())
391}