datafusion_remote_table/connection/
sqlite.rs1use crate::connection::{RemoteDbType, projections_contains};
2use crate::{
3 Connection, ConnectionOptions, DFResult, Pool, RemoteField, RemoteSchema, RemoteSchemaRef,
4 RemoteType, SqliteType,
5};
6use datafusion::arrow::array::{
7 ArrayBuilder, ArrayRef, BinaryBuilder, Float64Builder, Int64Builder, NullBuilder, RecordBatch,
8 StringBuilder, make_builder,
9};
10use datafusion::arrow::datatypes::{DataType, SchemaRef};
11use datafusion::common::{DataFusionError, project_schema};
12use datafusion::execution::SendableRecordBatchStream;
13use datafusion::physical_plan::memory::MemoryStream;
14use datafusion::prelude::Expr;
15use itertools::Itertools;
16use rusqlite::types::ValueRef;
17use rusqlite::{Column, Row, Rows};
18use std::collections::HashMap;
19use std::path::PathBuf;
20use std::sync::Arc;
21
22#[derive(Debug)]
23pub struct SqlitePool {
24 pool: tokio_rusqlite::Connection,
25}
26
27pub async fn connect_sqlite(path: &PathBuf) -> DFResult<SqlitePool> {
28 let pool = tokio_rusqlite::Connection::open(path).await.map_err(|e| {
29 DataFusionError::Execution(format!("Failed to open sqlite connection: {e:?}"))
30 })?;
31 Ok(SqlitePool { pool })
32}
33
34#[async_trait::async_trait]
35impl Pool for SqlitePool {
36 async fn get(&self) -> DFResult<Arc<dyn Connection>> {
37 let conn = self.pool.clone();
38 Ok(Arc::new(SqliteConnection { conn }))
39 }
40}
41
42#[derive(Debug)]
43pub struct SqliteConnection {
44 conn: tokio_rusqlite::Connection,
45}
46
47#[async_trait::async_trait]
48impl Connection for SqliteConnection {
49 async fn infer_schema(&self, sql: &str) -> DFResult<(RemoteSchemaRef, SchemaRef)> {
50 let sql = sql.to_string();
51 self.conn
52 .call(move |conn| {
53 let mut stmt = conn.prepare(&sql)?;
54 let columns: Vec<OwnedColumn> =
55 stmt.columns().iter().map(sqlite_col_to_owned_col).collect();
56 let rows = stmt.query([])?;
57
58 let remote_schema = Arc::new(
59 build_remote_schema(columns.as_slice(), rows)
60 .map_err(|e| tokio_rusqlite::Error::Other(Box::new(e)))?,
61 );
62 let arrow_schema = Arc::new(remote_schema.to_arrow_schema());
63 Ok((remote_schema, arrow_schema))
64 })
65 .await
66 .map_err(|e| DataFusionError::Execution(format!("Failed to infer schema: {e:?}")))
67 }
68
69 async fn query(
70 &self,
71 _conn_options: &ConnectionOptions,
72 sql: &str,
73 table_schema: SchemaRef,
74 projection: Option<&Vec<usize>>,
75 filters: &[Expr],
76 limit: Option<usize>,
77 ) -> DFResult<SendableRecordBatchStream> {
78 let projected_schema = project_schema(&table_schema, projection)?;
79 let sql = RemoteDbType::Sqlite
80 .try_rewrite_query(sql, filters, limit)
81 .unwrap_or_else(|| sql.to_string());
82 let sql_clone = sql.clone();
83 let projection = projection.cloned();
84 let batch = self
85 .conn
86 .call(move |conn| {
87 let mut stmt = conn.prepare(&sql)?;
88 let columns: Vec<OwnedColumn> =
89 stmt.columns().iter().map(sqlite_col_to_owned_col).collect();
90 let rows = stmt.query([])?;
91
92 let batch = rows_to_batch(rows, &table_schema, columns, projection.as_ref())
93 .map_err(|e| tokio_rusqlite::Error::Other(e.into()))?;
94 Ok(batch)
95 })
96 .await
97 .map_err(|e| {
98 DataFusionError::Execution(format!(
99 "Failed to execute query {sql_clone} on sqlite: {e:?}"
100 ))
101 })?;
102
103 let memory_stream = MemoryStream::try_new(vec![batch], projected_schema, None)?;
104 Ok(Box::pin(memory_stream))
105 }
106}
107
108#[derive(Debug)]
109struct OwnedColumn {
110 name: String,
111 decl_type: Option<String>,
112}
113
114fn sqlite_col_to_owned_col(sqlite_col: &Column) -> OwnedColumn {
115 OwnedColumn {
116 name: sqlite_col.name().to_string(),
117 decl_type: sqlite_col.decl_type().map(|x| x.to_string()),
118 }
119}
120
121fn decl_type_to_remote_type(decl_type: &str) -> DFResult<RemoteType> {
122 if "null".eq(decl_type) {
123 return Ok(RemoteType::Sqlite(SqliteType::Null));
124 }
125 if ["tinyint", "smallint", "int", "integer", "bigint"].contains(&decl_type) {
126 return Ok(RemoteType::Sqlite(SqliteType::Integer));
127 }
128 if ["real", "float", "double"].contains(&decl_type) {
129 return Ok(RemoteType::Sqlite(SqliteType::Real));
130 }
131 if ["text", "varchar", "char", "string"].contains(&decl_type) {
132 return Ok(RemoteType::Sqlite(SqliteType::Text));
133 }
134 if ["binary", "varbinary", "tinyblob", "blob"].contains(&decl_type) {
135 return Ok(RemoteType::Sqlite(SqliteType::Blob));
136 }
137 Err(DataFusionError::NotImplemented(format!(
138 "Unsupported sqlite decl type: {decl_type}",
139 )))
140}
141
142fn build_remote_schema(columns: &[OwnedColumn], mut rows: Rows) -> DFResult<RemoteSchema> {
143 let mut remote_field_map = HashMap::with_capacity(columns.len());
144 let mut unknown_cols = vec![];
145 for (col_idx, col) in columns.iter().enumerate() {
146 if let Some(decl_type) = &col.decl_type {
147 let remote_type = decl_type_to_remote_type(&decl_type.to_ascii_lowercase())?;
148 remote_field_map.insert(col_idx, RemoteField::new(&col.name, remote_type, true));
149 } else {
150 unknown_cols.push(col_idx);
151 }
152 }
153
154 if !unknown_cols.is_empty() {
155 while let Some(row) = rows.next().map_err(|e| {
156 DataFusionError::Execution(format!("Failed to get next row from sqlite: {e:?}"))
157 })? {
158 let mut to_be_removed = vec![];
159 for col_idx in unknown_cols.iter() {
160 let value_ref = row.get_ref(*col_idx).map_err(|e| {
161 DataFusionError::Execution(format!(
162 "Failed to get value ref for column {col_idx}: {e:?}"
163 ))
164 })?;
165 match value_ref {
166 ValueRef::Null => {}
167 ValueRef::Integer(_) => {
168 remote_field_map.insert(
169 *col_idx,
170 RemoteField::new(
171 columns[*col_idx].name.clone(),
172 RemoteType::Sqlite(SqliteType::Integer),
173 true,
174 ),
175 );
176 to_be_removed.push(*col_idx);
177 }
178 ValueRef::Real(_) => {
179 remote_field_map.insert(
180 *col_idx,
181 RemoteField::new(
182 columns[*col_idx].name.clone(),
183 RemoteType::Sqlite(SqliteType::Real),
184 true,
185 ),
186 );
187 to_be_removed.push(*col_idx);
188 }
189 ValueRef::Text(_) => {
190 remote_field_map.insert(
191 *col_idx,
192 RemoteField::new(
193 columns[*col_idx].name.clone(),
194 RemoteType::Sqlite(SqliteType::Text),
195 true,
196 ),
197 );
198 to_be_removed.push(*col_idx);
199 }
200 ValueRef::Blob(_) => {
201 remote_field_map.insert(
202 *col_idx,
203 RemoteField::new(
204 columns[*col_idx].name.clone(),
205 RemoteType::Sqlite(SqliteType::Blob),
206 true,
207 ),
208 );
209 to_be_removed.push(*col_idx);
210 }
211 }
212 }
213 for col_idx in to_be_removed.iter() {
214 unknown_cols.retain(|&x| x != *col_idx);
215 }
216 if unknown_cols.is_empty() {
217 break;
218 }
219 }
220 }
221
222 if !unknown_cols.is_empty() {
223 return Err(DataFusionError::NotImplemented(format!(
224 "Failed to infer sqlite decl type for columns: {unknown_cols:?}"
225 )));
226 }
227 let remote_fields = remote_field_map
228 .into_iter()
229 .sorted_by_key(|entry| entry.0)
230 .map(|entry| entry.1)
231 .collect::<Vec<_>>();
232 Ok(RemoteSchema::new(remote_fields))
233}
234
235fn rows_to_batch(
236 mut rows: Rows,
237 table_schema: &SchemaRef,
238 columns: Vec<OwnedColumn>,
239 projection: Option<&Vec<usize>>,
240) -> DFResult<RecordBatch> {
241 let projected_schema = project_schema(table_schema, projection)?;
242 let mut array_builders = vec![];
243 for field in table_schema.fields() {
244 let builder = make_builder(field.data_type(), 1000);
245 array_builders.push(builder);
246 }
247
248 while let Some(row) = rows.next().map_err(|e| {
249 DataFusionError::Execution(format!("Failed to get next row from sqlite: {e:?}"))
250 })? {
251 append_rows_to_array_builders(
252 row,
253 table_schema,
254 &columns,
255 projection,
256 array_builders.as_mut_slice(),
257 )?;
258 }
259
260 let projected_columns = array_builders
261 .into_iter()
262 .enumerate()
263 .filter(|(idx, _)| projections_contains(projection, *idx))
264 .map(|(_, mut builder)| builder.finish())
265 .collect::<Vec<ArrayRef>>();
266 Ok(RecordBatch::try_new(projected_schema, projected_columns)?)
267}
268
269macro_rules! handle_primitive_type {
270 ($builder:expr, $field:expr, $col:expr, $builder_ty:ty, $value_ty:ty, $row:expr, $index:expr) => {{
271 let builder = $builder
272 .as_any_mut()
273 .downcast_mut::<$builder_ty>()
274 .unwrap_or_else(|| {
275 panic!(
276 "Failed to downcast builder to {} for {:?} and {:?}",
277 stringify!($builder_ty),
278 $field,
279 $col
280 )
281 });
282
283 let v: Option<$value_ty> = $row.get($index).map_err(|e| {
284 DataFusionError::Execution(format!(
285 "Failed to get optional {} value for {:?} and {:?}: {e:?}",
286 stringify!($value_ty),
287 $field,
288 $col
289 ))
290 })?;
291
292 match v {
293 Some(v) => builder.append_value(v),
294 None => builder.append_null(),
295 }
296 }};
297}
298
299fn append_rows_to_array_builders(
300 row: &Row,
301 table_schema: &SchemaRef,
302 columns: &[OwnedColumn],
303 projection: Option<&Vec<usize>>,
304 array_builders: &mut [Box<dyn ArrayBuilder>],
305) -> DFResult<()> {
306 for (idx, field) in table_schema.fields.iter().enumerate() {
307 if !projections_contains(projection, idx) {
308 continue;
309 }
310 let builder = &mut array_builders[idx];
311 let col = columns.get(idx);
312 match field.data_type() {
313 DataType::Null => {
314 let builder = builder
315 .as_any_mut()
316 .downcast_mut::<NullBuilder>()
317 .expect("Failed to downcast builder to NullBuilder");
318 builder.append_null();
319 }
320 DataType::Int64 => {
321 handle_primitive_type!(builder, field, col, Int64Builder, i64, row, idx);
322 }
323 DataType::Float64 => {
324 handle_primitive_type!(builder, field, col, Float64Builder, f64, row, idx);
325 }
326 DataType::Utf8 => {
327 handle_primitive_type!(builder, field, col, StringBuilder, String, row, idx);
328 }
329 DataType::Binary => {
330 handle_primitive_type!(builder, field, col, BinaryBuilder, Vec<u8>, row, idx);
331 }
332 _ => {
333 return Err(DataFusionError::NotImplemented(format!(
334 "Unsupported data type {:?} for col: {:?}",
335 field.data_type(),
336 col
337 )));
338 }
339 }
340 }
341 Ok(())
342}