1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
use datafusion_common::Column;
use pyo3::prelude::*;
#[pyclass(name = "Column", module = "datafusion.expr", subclass)]
#[derive(Clone)]
pub struct PyColumn {
pub col: Column,
}
impl PyColumn {
pub fn new(col: Column) -> Self {
Self { col }
}
}
impl From<Column> for PyColumn {
fn from(col: Column) -> PyColumn {
PyColumn { col }
}
}
#[pymethods]
impl PyColumn {
/// Get the column name
fn name(&self) -> String {
self.col.name.clone()
}
/// Get the column relation
fn relation(&self) -> Option<String> {
self.col.relation.as_ref().map(|r| format!("{}", r))
}
/// Get the fully-qualified column name
fn qualified_name(&self) -> String {
self.col.flat_name()
}
/// Get a String representation of this column
fn __repr__(&self) -> String {
self.qualified_name()
}
}