1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

use crate::physical_plan::PyExecutionPlan;
use crate::sql::logical::PyLogicalPlan;
use crate::utils::wait_for_future;
use crate::{errors::DataFusionError, expr::PyExpr};
use datafusion::arrow::datatypes::Schema;
use datafusion::arrow::pyarrow::{PyArrowType, ToPyArrow};
use datafusion::arrow::util::pretty;
use datafusion::dataframe::{DataFrame, DataFrameWriteOptions};
use datafusion::parquet::basic::{BrotliLevel, Compression, GzipLevel, ZstdLevel};
use datafusion::parquet::file::properties::WriterProperties;
use datafusion::prelude::*;
use pyo3::exceptions::{PyTypeError, PyValueError};
use pyo3::prelude::*;
use pyo3::types::PyTuple;
use std::sync::Arc;

/// A PyDataFrame is a representation of a logical plan and an API to compose statements.
/// Use it to build a plan and `.collect()` to execute the plan and collect the result.
/// The actual execution of a plan runs natively on Rust and Arrow on a multi-threaded environment.
#[pyclass(name = "DataFrame", module = "datafusion", subclass)]
#[derive(Clone)]
pub(crate) struct PyDataFrame {
    df: Arc<DataFrame>,
}

impl PyDataFrame {
    /// creates a new PyDataFrame
    pub fn new(df: DataFrame) -> Self {
        Self { df: Arc::new(df) }
    }
}

#[pymethods]
impl PyDataFrame {
    fn __getitem__(&self, key: PyObject) -> PyResult<Self> {
        Python::with_gil(|py| {
            if let Ok(key) = key.extract::<&str>(py) {
                self.select_columns(vec![key])
            } else if let Ok(tuple) = key.extract::<&PyTuple>(py) {
                let keys = tuple
                    .iter()
                    .map(|item| item.extract::<&str>())
                    .collect::<PyResult<Vec<&str>>>()?;
                self.select_columns(keys)
            } else if let Ok(keys) = key.extract::<Vec<&str>>(py) {
                self.select_columns(keys)
            } else {
                let message = "DataFrame can only be indexed by string index or indices";
                Err(PyTypeError::new_err(message))
            }
        })
    }

    fn __repr__(&self, py: Python) -> PyResult<String> {
        let df = self.df.as_ref().clone().limit(0, Some(10))?;
        let batches = wait_for_future(py, df.collect())?;
        let batches_as_string = pretty::pretty_format_batches(&batches);
        match batches_as_string {
            Ok(batch) => Ok(format!("DataFrame()\n{batch}")),
            Err(err) => Ok(format!("Error: {:?}", err.to_string())),
        }
    }

    /// Calculate summary statistics for a DataFrame
    fn describe(&self, py: Python) -> PyResult<Self> {
        let df = self.df.as_ref().clone();
        let stat_df = wait_for_future(py, df.describe())?;
        Ok(Self::new(stat_df))
    }

    /// Returns the schema from the logical plan
    fn schema(&self) -> PyArrowType<Schema> {
        PyArrowType(self.df.schema().into())
    }

    #[pyo3(signature = (*args))]
    fn select_columns(&self, args: Vec<&str>) -> PyResult<Self> {
        let df = self.df.as_ref().clone().select_columns(&args)?;
        Ok(Self::new(df))
    }

    #[pyo3(signature = (*args))]
    fn select(&self, args: Vec<PyExpr>) -> PyResult<Self> {
        let expr = args.into_iter().map(|e| e.into()).collect();
        let df = self.df.as_ref().clone().select(expr)?;
        Ok(Self::new(df))
    }

    fn filter(&self, predicate: PyExpr) -> PyResult<Self> {
        let df = self.df.as_ref().clone().filter(predicate.into())?;
        Ok(Self::new(df))
    }

    fn with_column(&self, name: &str, expr: PyExpr) -> PyResult<Self> {
        let df = self.df.as_ref().clone().with_column(name, expr.into())?;
        Ok(Self::new(df))
    }

    /// Rename one column by applying a new projection. This is a no-op if the column to be
    /// renamed does not exist.
    fn with_column_renamed(&self, old_name: &str, new_name: &str) -> PyResult<Self> {
        let df = self
            .df
            .as_ref()
            .clone()
            .with_column_renamed(old_name, new_name)?;
        Ok(Self::new(df))
    }

    fn aggregate(&self, group_by: Vec<PyExpr>, aggs: Vec<PyExpr>) -> PyResult<Self> {
        let group_by = group_by.into_iter().map(|e| e.into()).collect();
        let aggs = aggs.into_iter().map(|e| e.into()).collect();
        let df = self.df.as_ref().clone().aggregate(group_by, aggs)?;
        Ok(Self::new(df))
    }

    #[pyo3(signature = (*exprs))]
    fn sort(&self, exprs: Vec<PyExpr>) -> PyResult<Self> {
        let exprs = exprs.into_iter().map(|e| e.into()).collect();
        let df = self.df.as_ref().clone().sort(exprs)?;
        Ok(Self::new(df))
    }

    #[pyo3(signature = (count, offset=0))]
    fn limit(&self, count: usize, offset: usize) -> PyResult<Self> {
        let df = self.df.as_ref().clone().limit(offset, Some(count))?;
        Ok(Self::new(df))
    }

    /// Executes the plan, returning a list of `RecordBatch`es.
    /// Unless some order is specified in the plan, there is no
    /// guarantee of the order of the result.
    fn collect(&self, py: Python) -> PyResult<Vec<PyObject>> {
        let batches = wait_for_future(py, self.df.as_ref().clone().collect())?;
        // cannot use PyResult<Vec<RecordBatch>> return type due to
        // https://github.com/PyO3/pyo3/issues/1813
        batches.into_iter().map(|rb| rb.to_pyarrow(py)).collect()
    }

    /// Cache DataFrame.
    fn cache(&self, py: Python) -> PyResult<Self> {
        let df = wait_for_future(py, self.df.as_ref().clone().cache())?;
        Ok(Self::new(df))
    }

    /// Executes this DataFrame and collects all results into a vector of vector of RecordBatch
    /// maintaining the input partitioning.
    fn collect_partitioned(&self, py: Python) -> PyResult<Vec<Vec<PyObject>>> {
        let batches = wait_for_future(py, self.df.as_ref().clone().collect_partitioned())?;

        batches
            .into_iter()
            .map(|rbs| rbs.into_iter().map(|rb| rb.to_pyarrow(py)).collect())
            .collect()
    }

    /// Print the result, 20 lines by default
    #[pyo3(signature = (num=20))]
    fn show(&self, py: Python, num: usize) -> PyResult<()> {
        let df = self.df.as_ref().clone().limit(0, Some(num))?;
        print_dataframe(py, df)
    }

    /// Filter out duplicate rows
    fn distinct(&self) -> PyResult<Self> {
        let df = self.df.as_ref().clone().distinct()?;
        Ok(Self::new(df))
    }

    fn join(
        &self,
        right: PyDataFrame,
        join_keys: (Vec<&str>, Vec<&str>),
        how: &str,
    ) -> PyResult<Self> {
        let join_type = match how {
            "inner" => JoinType::Inner,
            "left" => JoinType::Left,
            "right" => JoinType::Right,
            "full" => JoinType::Full,
            "semi" => JoinType::LeftSemi,
            "anti" => JoinType::LeftAnti,
            how => {
                return Err(DataFusionError::Common(format!(
                    "The join type {how} does not exist or is not implemented"
                ))
                .into());
            }
        };

        let df = self.df.as_ref().clone().join(
            right.df.as_ref().clone(),
            join_type,
            &join_keys.0,
            &join_keys.1,
            None,
        )?;
        Ok(Self::new(df))
    }

    /// Print the query plan
    #[pyo3(signature = (verbose=false, analyze=false))]
    fn explain(&self, py: Python, verbose: bool, analyze: bool) -> PyResult<()> {
        let df = self.df.as_ref().clone().explain(verbose, analyze)?;
        print_dataframe(py, df)
    }

    /// Get the logical plan for this `DataFrame`
    fn logical_plan(&self) -> PyResult<PyLogicalPlan> {
        Ok(self.df.as_ref().clone().logical_plan().clone().into())
    }

    /// Get the optimized logical plan for this `DataFrame`
    fn optimized_logical_plan(&self) -> PyResult<PyLogicalPlan> {
        Ok(self.df.as_ref().clone().into_optimized_plan()?.into())
    }

    /// Get the execution plan for this `DataFrame`
    fn execution_plan(&self, py: Python) -> PyResult<PyExecutionPlan> {
        let plan = wait_for_future(py, self.df.as_ref().clone().create_physical_plan())?;
        Ok(plan.into())
    }

    /// Repartition a `DataFrame` based on a logical partitioning scheme.
    fn repartition(&self, num: usize) -> PyResult<Self> {
        let new_df = self
            .df
            .as_ref()
            .clone()
            .repartition(Partitioning::RoundRobinBatch(num))?;
        Ok(Self::new(new_df))
    }

    /// Repartition a `DataFrame` based on a logical partitioning scheme.
    #[pyo3(signature = (*args, num))]
    fn repartition_by_hash(&self, args: Vec<PyExpr>, num: usize) -> PyResult<Self> {
        let expr = args.into_iter().map(|py_expr| py_expr.into()).collect();
        let new_df = self
            .df
            .as_ref()
            .clone()
            .repartition(Partitioning::Hash(expr, num))?;
        Ok(Self::new(new_df))
    }

    /// Calculate the union of two `DataFrame`s, preserving duplicate rows.The
    /// two `DataFrame`s must have exactly the same schema
    #[pyo3(signature = (py_df, distinct=false))]
    fn union(&self, py_df: PyDataFrame, distinct: bool) -> PyResult<Self> {
        let new_df = if distinct {
            self.df
                .as_ref()
                .clone()
                .union_distinct(py_df.df.as_ref().clone())?
        } else {
            self.df.as_ref().clone().union(py_df.df.as_ref().clone())?
        };

        Ok(Self::new(new_df))
    }

    /// Calculate the distinct union of two `DataFrame`s.  The
    /// two `DataFrame`s must have exactly the same schema
    fn union_distinct(&self, py_df: PyDataFrame) -> PyResult<Self> {
        let new_df = self
            .df
            .as_ref()
            .clone()
            .union_distinct(py_df.df.as_ref().clone())?;
        Ok(Self::new(new_df))
    }

    /// Calculate the intersection of two `DataFrame`s.  The two `DataFrame`s must have exactly the same schema
    fn intersect(&self, py_df: PyDataFrame) -> PyResult<Self> {
        let new_df = self
            .df
            .as_ref()
            .clone()
            .intersect(py_df.df.as_ref().clone())?;
        Ok(Self::new(new_df))
    }

    /// Calculate the exception of two `DataFrame`s.  The two `DataFrame`s must have exactly the same schema
    fn except_all(&self, py_df: PyDataFrame) -> PyResult<Self> {
        let new_df = self.df.as_ref().clone().except(py_df.df.as_ref().clone())?;
        Ok(Self::new(new_df))
    }

    /// Write a `DataFrame` to a CSV file.
    fn write_csv(&self, path: &str, py: Python) -> PyResult<()> {
        wait_for_future(
            py,
            self.df
                .as_ref()
                .clone()
                .write_csv(path, DataFrameWriteOptions::new(), None),
        )?;
        Ok(())
    }

    /// Write a `DataFrame` to a Parquet file.
    #[pyo3(signature = (
        path,
        compression="uncompressed",
        compression_level=None
        ))]
    fn write_parquet(
        &self,
        path: &str,
        compression: &str,
        compression_level: Option<u32>,
        py: Python,
    ) -> PyResult<()> {
        fn verify_compression_level(cl: Option<u32>) -> Result<u32, PyErr> {
            cl.ok_or(PyValueError::new_err("compression_level is not defined"))
        }

        let compression_type = match compression.to_lowercase().as_str() {
            "snappy" => Compression::SNAPPY,
            "gzip" => Compression::GZIP(
                GzipLevel::try_new(compression_level.unwrap_or(6))
                    .map_err(|e| PyValueError::new_err(format!("{e}")))?,
            ),
            "brotli" => Compression::BROTLI(
                BrotliLevel::try_new(verify_compression_level(compression_level)?)
                    .map_err(|e| PyValueError::new_err(format!("{e}")))?,
            ),
            "zstd" => Compression::ZSTD(
                ZstdLevel::try_new(verify_compression_level(compression_level)? as i32)
                    .map_err(|e| PyValueError::new_err(format!("{e}")))?,
            ),
            "lz0" => Compression::LZO,
            "lz4" => Compression::LZ4,
            "lz4_raw" => Compression::LZ4_RAW,
            "uncompressed" => Compression::UNCOMPRESSED,
            _ => {
                return Err(PyValueError::new_err(format!(
                    "Unrecognized compression type {compression}"
                )));
            }
        };

        let writer_properties = WriterProperties::builder()
            .set_compression(compression_type)
            .build();

        wait_for_future(
            py,
            self.df.as_ref().clone().write_parquet(
                path,
                DataFrameWriteOptions::new(),
                Option::from(writer_properties),
            ),
        )?;
        Ok(())
    }

    /// Executes a query and writes the results to a partitioned JSON file.
    fn write_json(&self, path: &str, py: Python) -> PyResult<()> {
        wait_for_future(
            py,
            self.df
                .as_ref()
                .clone()
                .write_json(path, DataFrameWriteOptions::new()),
        )?;
        Ok(())
    }

    /// Convert to Arrow Table
    /// Collect the batches and pass to Arrow Table
    fn to_arrow_table(&self, py: Python) -> PyResult<PyObject> {
        let batches = self.collect(py)?.to_object(py);
        let schema: PyObject = self.schema().into_py(py);

        Python::with_gil(|py| {
            // Instantiate pyarrow Table object and use its from_batches method
            let table_class = py.import("pyarrow")?.getattr("Table")?;
            let args = PyTuple::new(py, &[batches, schema]);
            let table: PyObject = table_class.call_method1("from_batches", args)?.into();
            Ok(table)
        })
    }

    /// Convert to pandas dataframe with pyarrow
    /// Collect the batches, pass to Arrow Table & then convert to Pandas DataFrame
    fn to_pandas(&self, py: Python) -> PyResult<PyObject> {
        let table = self.to_arrow_table(py)?;

        Python::with_gil(|py| {
            // See also: https://arrow.apache.org/docs/python/generated/pyarrow.Table.html#pyarrow.Table.to_pandas
            let result = table.call_method0(py, "to_pandas")?;
            Ok(result)
        })
    }

    /// Convert to Python list using pyarrow
    /// Each list item represents one row encoded as dictionary
    fn to_pylist(&self, py: Python) -> PyResult<PyObject> {
        let table = self.to_arrow_table(py)?;

        Python::with_gil(|py| {
            // See also: https://arrow.apache.org/docs/python/generated/pyarrow.Table.html#pyarrow.Table.to_pylist
            let result = table.call_method0(py, "to_pylist")?;
            Ok(result)
        })
    }

    /// Convert to Python dictionary using pyarrow
    /// Each dictionary key is a column and the dictionary value represents the column values
    fn to_pydict(&self, py: Python) -> PyResult<PyObject> {
        let table = self.to_arrow_table(py)?;

        Python::with_gil(|py| {
            // See also: https://arrow.apache.org/docs/python/generated/pyarrow.Table.html#pyarrow.Table.to_pydict
            let result = table.call_method0(py, "to_pydict")?;
            Ok(result)
        })
    }

    /// Convert to polars dataframe with pyarrow
    /// Collect the batches, pass to Arrow Table & then convert to polars DataFrame
    fn to_polars(&self, py: Python) -> PyResult<PyObject> {
        let table = self.to_arrow_table(py)?;

        Python::with_gil(|py| {
            let dataframe = py.import("polars")?.getattr("DataFrame")?;
            let args = PyTuple::new(py, &[table]);
            let result: PyObject = dataframe.call1(args)?.into();
            Ok(result)
        })
    }

    // Executes this DataFrame to get the total number of rows.
    fn count(&self, py: Python) -> PyResult<usize> {
        Ok(wait_for_future(py, self.df.as_ref().clone().count())?)
    }
}

/// Print DataFrame
fn print_dataframe(py: Python, df: DataFrame) -> PyResult<()> {
    // Get string representation of record batches
    let batches = wait_for_future(py, df.collect())?;
    let batches_as_string = pretty::pretty_format_batches(&batches);
    let result = match batches_as_string {
        Ok(batch) => format!("DataFrame()\n{batch}"),
        Err(err) => format!("Error: {:?}", err.to_string()),
    };

    // Import the Python 'builtins' module to access the print function
    // Note that println! does not print to the Python debug console and is not visible in notebooks for instance
    let print = py.import("builtins")?.getattr("print")?;
    print.call1((result,))?;
    Ok(())
}