1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
use datafusion::arrow::datatypes::DataType;
use pyo3::prelude::*;
use crate::common::data_type::PyDataType;
#[pyclass(name = "ScalarVariable", module = "datafusion.expr", subclass)]
#[derive(Clone)]
pub struct PyScalarVariable {
data_type: DataType,
variables: Vec<String>,
}
impl PyScalarVariable {
pub fn new(data_type: &DataType, variables: &[String]) -> Self {
Self {
data_type: data_type.to_owned(),
variables: variables.to_vec(),
}
}
}
#[pymethods]
impl PyScalarVariable {
/// Get the data type
fn data_type(&self) -> PyResult<PyDataType> {
Ok(self.data_type.clone().into())
}
fn variables(&self) -> PyResult<Vec<String>> {
Ok(self.variables.clone())
}
fn __repr__(&self) -> PyResult<String> {
Ok(format!("{}{:?}", self.data_type, self.variables))
}
}