1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
use datafusion_common::DataFusionError;
use datafusion_expr::logical_plan::Aggregate;
use pyo3::prelude::*;
use std::fmt::{self, Display, Formatter};
use super::logical_node::LogicalNode;
use crate::common::df_schema::PyDFSchema;
use crate::expr::PyExpr;
use crate::sql::logical::PyLogicalPlan;
#[pyclass(name = "Aggregate", module = "datafusion.expr", subclass)]
#[derive(Clone)]
pub struct PyAggregate {
aggregate: Aggregate,
}
impl From<Aggregate> for PyAggregate {
fn from(aggregate: Aggregate) -> PyAggregate {
PyAggregate { aggregate }
}
}
impl TryFrom<PyAggregate> for Aggregate {
type Error = DataFusionError;
fn try_from(agg: PyAggregate) -> Result<Self, Self::Error> {
Ok(agg.aggregate)
}
}
impl Display for PyAggregate {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
write!(
f,
"Aggregate
\nGroupBy(s): {:?}
\nAggregates(s): {:?}
\nInput: {:?}
\nProjected Schema: {:?}",
&self.aggregate.group_expr,
&self.aggregate.aggr_expr,
self.aggregate.input,
self.aggregate.schema
)
}
}
#[pymethods]
impl PyAggregate {
/// Retrieves the grouping expressions for this `Aggregate`
fn group_by_exprs(&self) -> PyResult<Vec<PyExpr>> {
Ok(self
.aggregate
.group_expr
.iter()
.map(|e| PyExpr::from(e.clone()))
.collect())
}
/// Retrieves the aggregate expressions for this `Aggregate`
fn aggregate_exprs(&self) -> PyResult<Vec<PyExpr>> {
Ok(self
.aggregate
.aggr_expr
.iter()
.map(|e| PyExpr::from(e.clone()))
.collect())
}
// Retrieves the input `LogicalPlan` to this `Aggregate` node
fn input(&self) -> PyResult<Vec<PyLogicalPlan>> {
Ok(Self::inputs(self))
}
// Resulting Schema for this `Aggregate` node instance
fn schema(&self) -> PyDFSchema {
(*self.aggregate.schema).clone().into()
}
fn __repr__(&self) -> PyResult<String> {
Ok(format!("Aggregate({})", self))
}
}
impl LogicalNode for PyAggregate {
fn inputs(&self) -> Vec<PyLogicalPlan> {
vec![PyLogicalPlan::from((*self.aggregate.input).clone())]
}
fn to_variant(&self, py: Python) -> PyResult<PyObject> {
Ok(self.clone().into_py(py))
}
}