1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
//! Traits for physical query plan, supporting parallel execution for partitioned relations.
use std::any::Any;
use std::fmt::Debug;
use std::sync::Arc;
use crate::coalesce_partitions::CoalescePartitionsExec;
use crate::display::DisplayableExecutionPlan;
use crate::metrics::MetricsSet;
use crate::repartition::RepartitionExec;
use crate::sorts::sort_preserving_merge::SortPreservingMergeExec;
use arrow::datatypes::SchemaRef;
use arrow::record_batch::RecordBatch;
use datafusion_common::tree_node::Transformed;
use datafusion_common::utils::DataPtr;
use datafusion_common::{plan_err, DataFusionError, Result};
use datafusion_execution::TaskContext;
use datafusion_physical_expr::expressions::Column;
use datafusion_physical_expr::{
EquivalenceProperties, PhysicalSortExpr, PhysicalSortRequirement,
};
use futures::stream::TryStreamExt;
use tokio::task::JoinSet;
mod topk;
mod visitor;
pub mod aggregates;
pub mod analyze;
pub mod coalesce_batches;
pub mod coalesce_partitions;
pub mod common;
pub mod display;
pub mod empty;
pub mod explain;
pub mod filter;
pub mod insert;
pub mod joins;
pub mod limit;
pub mod memory;
pub mod metrics;
mod ordering;
pub mod placeholder_row;
pub mod projection;
pub mod repartition;
pub mod sorts;
pub mod stream;
pub mod streaming;
pub mod tree_node;
pub mod udaf;
pub mod union;
pub mod unnest;
pub mod values;
pub mod windows;
pub use crate::display::{DefaultDisplay, DisplayAs, DisplayFormatType, VerboseDisplay};
pub use crate::metrics::Metric;
pub use crate::ordering::InputOrderMode;
pub use crate::topk::TopK;
pub use crate::visitor::{accept, visit_execution_plan, ExecutionPlanVisitor};
use datafusion_common::config::ConfigOptions;
pub use datafusion_common::hash_utils;
pub use datafusion_common::utils::project_schema;
pub use datafusion_common::{internal_err, ColumnStatistics, Statistics};
pub use datafusion_expr::{Accumulator, ColumnarValue};
pub use datafusion_physical_expr::window::WindowExpr;
pub use datafusion_physical_expr::{
expressions, functions, udf, AggregateExpr, Distribution, Partitioning, PhysicalExpr,
};
// Backwards compatibility
pub use crate::stream::EmptyRecordBatchStream;
pub use datafusion_execution::{RecordBatchStream, SendableRecordBatchStream};
/// Represent nodes in the DataFusion Physical Plan.
///
/// Calling [`execute`] produces an `async` [`SendableRecordBatchStream`] of
/// [`RecordBatch`] that incrementally computes a partition of the
/// `ExecutionPlan`'s output from its input. See [`Partitioning`] for more
/// details on partitioning.
///
/// Methods such as [`schema`] and [`output_partitioning`] communicate
/// properties of this output to the DataFusion optimizer, and methods such as
/// [`required_input_distribution`] and [`required_input_ordering`] express
/// requirements of the `ExecutionPlan` from its input.
///
/// [`ExecutionPlan`] can be displayed in a simplified form using the
/// return value from [`displayable`] in addition to the (normally
/// quite verbose) `Debug` output.
///
/// [`execute`]: ExecutionPlan::execute
/// [`schema`]: ExecutionPlan::schema
/// [`output_partitioning`]: ExecutionPlan::output_partitioning
/// [`required_input_distribution`]: ExecutionPlan::required_input_distribution
/// [`required_input_ordering`]: ExecutionPlan::required_input_ordering
pub trait ExecutionPlan: Debug + DisplayAs + Send + Sync {
/// Returns the execution plan as [`Any`] so that it can be
/// downcast to a specific implementation.
fn as_any(&self) -> &dyn Any;
/// Get the schema for this execution plan
fn schema(&self) -> SchemaRef;
/// Specifies how the output of this `ExecutionPlan` is split into
/// partitions.
fn output_partitioning(&self) -> Partitioning;
/// Specifies whether this plan generates an infinite stream of records.
/// If the plan does not support pipelining, but its input(s) are
/// infinite, returns an error to indicate this.
fn unbounded_output(&self, _children: &[bool]) -> Result<bool> {
if _children.iter().any(|&x| x) {
plan_err!("Plan does not support infinite stream from its children")
} else {
Ok(false)
}
}
/// If the output of this `ExecutionPlan` within each partition is sorted,
/// returns `Some(keys)` with the description of how it was sorted.
///
/// For example, Sort, (obviously) produces sorted output as does
/// SortPreservingMergeStream. Less obviously `Projection`
/// produces sorted output if its input was sorted as it does not
/// reorder the input rows,
///
/// It is safe to return `None` here if your `ExecutionPlan` does not
/// have any particular output order here
fn output_ordering(&self) -> Option<&[PhysicalSortExpr]>;
/// Specifies the data distribution requirements for all the
/// children for this `ExecutionPlan`, By default it's [[Distribution::UnspecifiedDistribution]] for each child,
fn required_input_distribution(&self) -> Vec<Distribution> {
vec![Distribution::UnspecifiedDistribution; self.children().len()]
}
/// Specifies the ordering required for all of the children of this
/// `ExecutionPlan`.
///
/// For each child, it's the local ordering requirement within
/// each partition rather than the global ordering
///
/// NOTE that checking `!is_empty()` does **not** check for a
/// required input ordering. Instead, the correct check is that at
/// least one entry must be `Some`
fn required_input_ordering(&self) -> Vec<Option<Vec<PhysicalSortRequirement>>> {
vec![None; self.children().len()]
}
/// Returns `false` if this `ExecutionPlan`'s implementation may reorder
/// rows within or between partitions.
///
/// For example, Projection, Filter, and Limit maintain the order
/// of inputs -- they may transform values (Projection) or not
/// produce the same number of rows that went in (Filter and
/// Limit), but the rows that are produced go in the same way.
///
/// DataFusion uses this metadata to apply certain optimizations
/// such as automatically repartitioning correctly.
///
/// The default implementation returns `false`
///
/// WARNING: if you override this default, you *MUST* ensure that
/// the `ExecutionPlan`'s maintains the ordering invariant or else
/// DataFusion may produce incorrect results.
fn maintains_input_order(&self) -> Vec<bool> {
vec![false; self.children().len()]
}
/// Specifies whether the `ExecutionPlan` benefits from increased
/// parallelization at its input for each child.
///
/// If returns `true`, the `ExecutionPlan` would benefit from partitioning
/// its corresponding child (and thus from more parallelism). For
/// `ExecutionPlan` that do very little work the overhead of extra
/// parallelism may outweigh any benefits
///
/// The default implementation returns `true` unless this `ExecutionPlan`
/// has signalled it requires a single child input partition.
fn benefits_from_input_partitioning(&self) -> Vec<bool> {
// By default try to maximize parallelism with more CPUs if
// possible
self.required_input_distribution()
.into_iter()
.map(|dist| !matches!(dist, Distribution::SinglePartition))
.collect()
}
/// Get the [`EquivalenceProperties`] within the plan.
///
/// Equivalence properties tell DataFusion what columns are known to be
/// equal, during various optimization passes. By default, this returns "no
/// known equivalences" which is always correct, but may cause DataFusion to
/// unnecessarily resort data.
///
/// If this ExecutionPlan makes no changes to the schema of the rows flowing
/// through it or how columns within each row relate to each other, it
/// should return the equivalence properties of its input. For
/// example, since `FilterExec` may remove rows from its input, but does not
/// otherwise modify them, it preserves its input equivalence properties.
/// However, since `ProjectionExec` may calculate derived expressions, it
/// needs special handling.
///
/// See also [`Self::maintains_input_order`] and [`Self::output_ordering`]
/// for related concepts.
fn equivalence_properties(&self) -> EquivalenceProperties {
EquivalenceProperties::new(self.schema())
}
/// Get a list of children `ExecutionPlan`s that act as inputs to this plan.
/// The returned list will be empty for leaf nodes such as scans, will contain
/// a single value for unary nodes, or two values for binary nodes (such as
/// joins).
fn children(&self) -> Vec<Arc<dyn ExecutionPlan>>;
/// Returns a new `ExecutionPlan` where all existing children were replaced
/// by the `children`, oi order
fn with_new_children(
self: Arc<Self>,
children: Vec<Arc<dyn ExecutionPlan>>,
) -> Result<Arc<dyn ExecutionPlan>>;
/// If supported, attempt to increase the partitioning of this `ExecutionPlan` to
/// produce `target_partitions` partitions.
///
/// If the `ExecutionPlan` does not support changing its partitioning,
/// returns `Ok(None)` (the default).
///
/// It is the `ExecutionPlan` can increase its partitioning, but not to the
/// `target_partitions`, it may return an ExecutionPlan with fewer
/// partitions. This might happen, for example, if each new partition would
/// be too small to be efficiently processed individually.
///
/// The DataFusion optimizer attempts to use as many threads as possible by
/// repartitioning its inputs to match the target number of threads
/// available (`target_partitions`). Some data sources, such as the built in
/// CSV and Parquet readers, implement this method as they are able to read
/// from their input files in parallel, regardless of how the source data is
/// split amongst files.
fn repartitioned(
&self,
_target_partitions: usize,
_config: &ConfigOptions,
) -> Result<Option<Arc<dyn ExecutionPlan>>> {
Ok(None)
}
/// Begin execution of `partition`, returning a [`Stream`] of
/// [`RecordBatch`]es.
///
/// # Notes
///
/// The `execute` method itself is not `async` but it returns an `async`
/// [`futures::stream::Stream`]. This `Stream` should incrementally compute
/// the output, `RecordBatch` by `RecordBatch` (in a streaming fashion).
/// Most `ExecutionPlan`s should not do any work before the first
/// `RecordBatch` is requested from the stream.
///
/// [`RecordBatchStreamAdapter`] can be used to convert an `async`
/// [`Stream`] into a [`SendableRecordBatchStream`].
///
/// Using `async` `Streams` allows for network I/O during execution and
/// takes advantage of Rust's built in support for `async` continuations and
/// crate ecosystem.
///
/// [`Stream`]: futures::stream::Stream
/// [`StreamExt`]: futures::stream::StreamExt
/// [`TryStreamExt`]: futures::stream::TryStreamExt
/// [`RecordBatchStreamAdapter`]: crate::stream::RecordBatchStreamAdapter
///
/// # Cancellation / Aborting Execution
///
/// The [`Stream`] that is returned must ensure that any allocated resources
/// are freed when the stream itself is dropped. This is particularly
/// important for [`spawn`]ed tasks or threads. Unless care is taken to
/// "abort" such tasks, they may continue to consume resources even after
/// the plan is dropped, generating intermediate results that are never
/// used.
///
/// See [`AbortOnDropSingle`], [`AbortOnDropMany`] and
/// [`RecordBatchReceiverStreamBuilder`] for structures to help ensure all
/// background tasks are cancelled.
///
/// [`spawn`]: tokio::task::spawn
/// [`AbortOnDropSingle`]: crate::common::AbortOnDropSingle
/// [`AbortOnDropMany`]: crate::common::AbortOnDropMany
/// [`RecordBatchReceiverStreamBuilder`]: crate::stream::RecordBatchReceiverStreamBuilder
///
/// # Implementation Examples
///
/// While `async` `Stream`s have a non trivial learning curve, the
/// [`futures`] crate provides [`StreamExt`] and [`TryStreamExt`]
/// which help simplify many common operations.
///
/// Here are some common patterns:
///
/// ## Return Precomputed `RecordBatch`
///
/// We can return a precomputed `RecordBatch` as a `Stream`:
///
/// ```
/// # use std::sync::Arc;
/// # use arrow_array::RecordBatch;
/// # use arrow_schema::SchemaRef;
/// # use datafusion_common::Result;
/// # use datafusion_execution::{SendableRecordBatchStream, TaskContext};
/// # use datafusion_physical_plan::memory::MemoryStream;
/// # use datafusion_physical_plan::stream::RecordBatchStreamAdapter;
/// struct MyPlan {
/// batch: RecordBatch,
/// }
///
/// impl MyPlan {
/// fn execute(
/// &self,
/// partition: usize,
/// context: Arc<TaskContext>
/// ) -> Result<SendableRecordBatchStream> {
/// // use functions from futures crate convert the batch into a stream
/// let fut = futures::future::ready(Ok(self.batch.clone()));
/// let stream = futures::stream::once(fut);
/// Ok(Box::pin(RecordBatchStreamAdapter::new(self.batch.schema(), stream)))
/// }
/// }
/// ```
///
/// ## Lazily (async) Compute `RecordBatch`
///
/// We can also lazily compute a `RecordBatch` when the returned `Stream` is polled
///
/// ```
/// # use std::sync::Arc;
/// # use arrow_array::RecordBatch;
/// # use arrow_schema::SchemaRef;
/// # use datafusion_common::Result;
/// # use datafusion_execution::{SendableRecordBatchStream, TaskContext};
/// # use datafusion_physical_plan::memory::MemoryStream;
/// # use datafusion_physical_plan::stream::RecordBatchStreamAdapter;
/// struct MyPlan {
/// schema: SchemaRef,
/// }
///
/// /// Returns a single batch when the returned stream is polled
/// async fn get_batch() -> Result<RecordBatch> {
/// todo!()
/// }
///
/// impl MyPlan {
/// fn execute(
/// &self,
/// partition: usize,
/// context: Arc<TaskContext>
/// ) -> Result<SendableRecordBatchStream> {
/// let fut = get_batch();
/// let stream = futures::stream::once(fut);
/// Ok(Box::pin(RecordBatchStreamAdapter::new(self.schema.clone(), stream)))
/// }
/// }
/// ```
///
/// ## Lazily (async) create a Stream
///
/// If you need to to create the return `Stream` using an `async` function,
/// you can do so by flattening the result:
///
/// ```
/// # use std::sync::Arc;
/// # use arrow_array::RecordBatch;
/// # use arrow_schema::SchemaRef;
/// # use futures::TryStreamExt;
/// # use datafusion_common::Result;
/// # use datafusion_execution::{SendableRecordBatchStream, TaskContext};
/// # use datafusion_physical_plan::memory::MemoryStream;
/// # use datafusion_physical_plan::stream::RecordBatchStreamAdapter;
/// struct MyPlan {
/// schema: SchemaRef,
/// }
///
/// /// async function that returns a stream
/// async fn get_batch_stream() -> Result<SendableRecordBatchStream> {
/// todo!()
/// }
///
/// impl MyPlan {
/// fn execute(
/// &self,
/// partition: usize,
/// context: Arc<TaskContext>
/// ) -> Result<SendableRecordBatchStream> {
/// // A future that yields a stream
/// let fut = get_batch_stream();
/// // Use TryStreamExt::try_flatten to flatten the stream of streams
/// let stream = futures::stream::once(fut).try_flatten();
/// Ok(Box::pin(RecordBatchStreamAdapter::new(self.schema.clone(), stream)))
/// }
/// }
/// ```
fn execute(
&self,
partition: usize,
context: Arc<TaskContext>,
) -> Result<SendableRecordBatchStream>;
/// Return a snapshot of the set of [`Metric`]s for this
/// [`ExecutionPlan`]. If no `Metric`s are available, return None.
///
/// While the values of the metrics in the returned
/// [`MetricsSet`]s may change as execution progresses, the
/// specific metrics will not.
///
/// Once `self.execute()` has returned (technically the future is
/// resolved) for all available partitions, the set of metrics
/// should be complete. If this function is called prior to
/// `execute()` new metrics may appear in subsequent calls.
fn metrics(&self) -> Option<MetricsSet> {
None
}
/// Returns statistics for this `ExecutionPlan` node. If statistics are not
/// available, should return [`Statistics::new_unknown`] (the default), not
/// an error.
fn statistics(&self) -> Result<Statistics> {
Ok(Statistics::new_unknown(&self.schema()))
}
}
/// Indicate whether a data exchange is needed for the input of `plan`, which will be very helpful
/// especially for the distributed engine to judge whether need to deal with shuffling.
/// Currently there are 3 kinds of execution plan which needs data exchange
/// 1. RepartitionExec for changing the partition number between two `ExecutionPlan`s
/// 2. CoalescePartitionsExec for collapsing all of the partitions into one without ordering guarantee
/// 3. SortPreservingMergeExec for collapsing all of the sorted partitions into one with ordering guarantee
pub fn need_data_exchange(plan: Arc<dyn ExecutionPlan>) -> bool {
if let Some(repart) = plan.as_any().downcast_ref::<RepartitionExec>() {
!matches!(
repart.output_partitioning(),
Partitioning::RoundRobinBatch(_)
)
} else if let Some(coalesce) = plan.as_any().downcast_ref::<CoalescePartitionsExec>()
{
coalesce.input().output_partitioning().partition_count() > 1
} else if let Some(sort_preserving_merge) =
plan.as_any().downcast_ref::<SortPreservingMergeExec>()
{
sort_preserving_merge
.input()
.output_partitioning()
.partition_count()
> 1
} else {
false
}
}
/// Returns a copy of this plan if we change any child according to the pointer comparison.
/// The size of `children` must be equal to the size of `ExecutionPlan::children()`.
pub fn with_new_children_if_necessary(
plan: Arc<dyn ExecutionPlan>,
children: Vec<Arc<dyn ExecutionPlan>>,
) -> Result<Transformed<Arc<dyn ExecutionPlan>>> {
let old_children = plan.children();
if children.len() != old_children.len() {
internal_err!("Wrong number of children")
} else if children.is_empty()
|| children
.iter()
.zip(old_children.iter())
.any(|(c1, c2)| !Arc::data_ptr_eq(c1, c2))
{
Ok(Transformed::Yes(plan.with_new_children(children)?))
} else {
Ok(Transformed::No(plan))
}
}
/// Return a [wrapper](DisplayableExecutionPlan) around an
/// [`ExecutionPlan`] which can be displayed in various easier to
/// understand ways.
pub fn displayable(plan: &dyn ExecutionPlan) -> DisplayableExecutionPlan<'_> {
DisplayableExecutionPlan::new(plan)
}
/// Execute the [ExecutionPlan] and collect the results in memory
pub async fn collect(
plan: Arc<dyn ExecutionPlan>,
context: Arc<TaskContext>,
) -> Result<Vec<RecordBatch>> {
let stream = execute_stream(plan, context)?;
common::collect(stream).await
}
/// Execute the [ExecutionPlan] and return a single stream of results.
///
/// # Aborting Execution
///
/// Dropping the stream will abort the execution of the query, and free up
/// any allocated resources
pub fn execute_stream(
plan: Arc<dyn ExecutionPlan>,
context: Arc<TaskContext>,
) -> Result<SendableRecordBatchStream> {
match plan.output_partitioning().partition_count() {
0 => Ok(Box::pin(EmptyRecordBatchStream::new(plan.schema()))),
1 => plan.execute(0, context),
_ => {
// merge into a single partition
let plan = CoalescePartitionsExec::new(plan.clone());
// CoalescePartitionsExec must produce a single partition
assert_eq!(1, plan.output_partitioning().partition_count());
plan.execute(0, context)
}
}
}
/// Execute the [ExecutionPlan] and collect the results in memory
pub async fn collect_partitioned(
plan: Arc<dyn ExecutionPlan>,
context: Arc<TaskContext>,
) -> Result<Vec<Vec<RecordBatch>>> {
let streams = execute_stream_partitioned(plan, context)?;
let mut join_set = JoinSet::new();
// Execute the plan and collect the results into batches.
streams.into_iter().enumerate().for_each(|(idx, stream)| {
join_set.spawn(async move {
let result: Result<Vec<RecordBatch>> = stream.try_collect().await;
(idx, result)
});
});
let mut batches = vec![];
// Note that currently this doesn't identify the thread that panicked
//
// TODO: Replace with [join_next_with_id](https://docs.rs/tokio/latest/tokio/task/struct.JoinSet.html#method.join_next_with_id
// once it is stable
while let Some(result) = join_set.join_next().await {
match result {
Ok((idx, res)) => batches.push((idx, res?)),
Err(e) => {
if e.is_panic() {
std::panic::resume_unwind(e.into_panic());
} else {
unreachable!();
}
}
}
}
batches.sort_by_key(|(idx, _)| *idx);
let batches = batches.into_iter().map(|(_, batch)| batch).collect();
Ok(batches)
}
/// Execute the [ExecutionPlan] and return a vec with one stream per output
/// partition
///
/// # Aborting Execution
///
/// Dropping the stream will abort the execution of the query, and free up
/// any allocated resources
pub fn execute_stream_partitioned(
plan: Arc<dyn ExecutionPlan>,
context: Arc<TaskContext>,
) -> Result<Vec<SendableRecordBatchStream>> {
let num_partitions = plan.output_partitioning().partition_count();
let mut streams = Vec::with_capacity(num_partitions);
for i in 0..num_partitions {
streams.push(plan.execute(i, context.clone())?);
}
Ok(streams)
}
// Get output (un)boundedness information for the given `plan`.
pub fn unbounded_output(plan: &Arc<dyn ExecutionPlan>) -> bool {
let children_unbounded_output = plan
.children()
.iter()
.map(unbounded_output)
.collect::<Vec<_>>();
plan.unbounded_output(&children_unbounded_output)
.unwrap_or(true)
}
/// Utility function yielding a string representation of the given [`ExecutionPlan`].
pub fn get_plan_string(plan: &Arc<dyn ExecutionPlan>) -> Vec<String> {
let formatted = displayable(plan.as_ref()).indent(true).to_string();
let actual: Vec<&str> = formatted.trim().lines().collect();
actual.iter().map(|elem| elem.to_string()).collect()
}
#[cfg(test)]
pub mod test;