datafusion_physical_optimizer/update_aggr_exprs.rs
1// Licensed to the Apache Software Foundation (ASF) under one
2// or more contributor license agreements. See the NOTICE file
3// distributed with this work for additional information
4// regarding copyright ownership. The ASF licenses this file
5// to you under the Apache License, Version 2.0 (the
6// "License"); you may not use this file except in compliance
7// with the License. You may obtain a copy of the License at
8//
9// http://www.apache.org/licenses/LICENSE-2.0
10//
11// Unless required by applicable law or agreed to in writing,
12// software distributed under the License is distributed on an
13// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
14// KIND, either express or implied. See the License for the
15// specific language governing permissions and limitations
16// under the License.
17
18//! An optimizer rule that checks ordering requirements of aggregate expressions
19//! and modifies the expressions to work more efficiently if possible.
20
21use std::sync::Arc;
22
23use datafusion_common::config::ConfigOptions;
24use datafusion_common::tree_node::{Transformed, TransformedResult, TreeNode};
25use datafusion_common::{plan_datafusion_err, Result};
26use datafusion_physical_expr::aggregate::AggregateFunctionExpr;
27use datafusion_physical_expr::LexRequirement;
28use datafusion_physical_expr::{
29 reverse_order_bys, EquivalenceProperties, PhysicalSortRequirement,
30};
31use datafusion_physical_expr_common::sort_expr::LexOrdering;
32use datafusion_physical_plan::aggregates::concat_slices;
33use datafusion_physical_plan::windows::get_ordered_partition_by_indices;
34use datafusion_physical_plan::{
35 aggregates::AggregateExec, ExecutionPlan, ExecutionPlanProperties,
36};
37
38use crate::PhysicalOptimizerRule;
39
40/// This optimizer rule checks ordering requirements of aggregate expressions.
41///
42/// There are 3 kinds of aggregators in terms of ordering requirements:
43/// - `AggregateOrderSensitivity::Insensitive`, meaning that ordering is not
44/// important.
45/// - `AggregateOrderSensitivity::HardRequirement`, meaning that the aggregator
46/// requires a specific ordering.
47/// - `AggregateOrderSensitivity::Beneficial`, meaning that the aggregator can
48/// handle unordered input, but can run more efficiently if its input conforms
49/// to a specific ordering.
50///
51/// This rule analyzes aggregate expressions of type `Beneficial` to see whether
52/// their input ordering requirements are satisfied. If this is the case, the
53/// aggregators are modified to run in a more efficient mode.
54#[derive(Default, Debug)]
55pub struct OptimizeAggregateOrder {}
56
57impl OptimizeAggregateOrder {
58 #[allow(missing_docs)]
59 pub fn new() -> Self {
60 Self::default()
61 }
62}
63
64impl PhysicalOptimizerRule for OptimizeAggregateOrder {
65 /// Applies the `OptimizeAggregateOrder` rule to the provided execution plan.
66 ///
67 /// This function traverses the execution plan tree, identifies `AggregateExec` nodes,
68 /// and optimizes their aggregate expressions based on existing input orderings.
69 /// If optimizations are applied, it returns a modified execution plan.
70 ///
71 /// # Arguments
72 ///
73 /// * `plan` - The root of the execution plan to optimize.
74 /// * `_config` - Configuration options (currently unused).
75 ///
76 /// # Returns
77 ///
78 /// A `Result` containing the potentially optimized execution plan or an error.
79 fn optimize(
80 &self,
81 plan: Arc<dyn ExecutionPlan>,
82 _config: &ConfigOptions,
83 ) -> Result<Arc<dyn ExecutionPlan>> {
84 plan.transform_up(|plan| {
85 if let Some(aggr_exec) = plan.as_any().downcast_ref::<AggregateExec>() {
86 // Final stage implementations do not rely on ordering -- those
87 // ordering fields may be pruned out by first stage aggregates.
88 // Hence, necessary information for proper merge is added during
89 // the first stage to the state field, which the final stage uses.
90 if !aggr_exec.mode().is_first_stage() {
91 return Ok(Transformed::no(plan));
92 }
93 let input = aggr_exec.input();
94 let mut aggr_expr = aggr_exec.aggr_expr().to_vec();
95
96 let groupby_exprs = aggr_exec.group_expr().input_exprs();
97 // If the existing ordering satisfies a prefix of the GROUP BY
98 // expressions, prefix requirements with this section. In this
99 // case, aggregation will work more efficiently.
100 let indices = get_ordered_partition_by_indices(&groupby_exprs, input);
101 let requirement = indices
102 .iter()
103 .map(|&idx| {
104 PhysicalSortRequirement::new(
105 Arc::<dyn datafusion_physical_plan::PhysicalExpr>::clone(
106 &groupby_exprs[idx],
107 ),
108 None,
109 )
110 })
111 .collect::<Vec<_>>();
112
113 aggr_expr = try_convert_aggregate_if_better(
114 aggr_expr,
115 &requirement,
116 input.equivalence_properties(),
117 )?;
118
119 let aggr_exec = aggr_exec.with_new_aggr_exprs(aggr_expr);
120
121 Ok(Transformed::yes(Arc::new(aggr_exec) as _))
122 } else {
123 Ok(Transformed::no(plan))
124 }
125 })
126 .data()
127 }
128
129 fn name(&self) -> &str {
130 "OptimizeAggregateOrder"
131 }
132
133 fn schema_check(&self) -> bool {
134 true
135 }
136}
137
138/// Tries to convert each aggregate expression to a potentially more efficient
139/// version.
140///
141/// # Parameters
142///
143/// * `aggr_exprs` - A vector of `AggregateFunctionExpr` representing the
144/// aggregate expressions to be optimized.
145/// * `prefix_requirement` - An array slice representing the ordering
146/// requirements preceding the aggregate expressions.
147/// * `eq_properties` - A reference to the `EquivalenceProperties` object
148/// containing ordering information.
149///
150/// # Returns
151///
152/// Returns `Ok(converted_aggr_exprs)` if the conversion process completes
153/// successfully. Any errors occurring during the conversion process are
154/// passed through.
155fn try_convert_aggregate_if_better(
156 aggr_exprs: Vec<Arc<AggregateFunctionExpr>>,
157 prefix_requirement: &[PhysicalSortRequirement],
158 eq_properties: &EquivalenceProperties,
159) -> Result<Vec<Arc<AggregateFunctionExpr>>> {
160 aggr_exprs
161 .into_iter()
162 .map(|aggr_expr| {
163 let aggr_sort_exprs = aggr_expr
164 .order_bys()
165 .unwrap_or_else(|| LexOrdering::empty());
166 let reverse_aggr_sort_exprs = reverse_order_bys(aggr_sort_exprs);
167 let aggr_sort_reqs = LexRequirement::from(aggr_sort_exprs.clone());
168 let reverse_aggr_req = LexRequirement::from(reverse_aggr_sort_exprs);
169
170 // If the aggregate expression benefits from input ordering, and
171 // there is an actual ordering enabling this, try to update the
172 // aggregate expression to benefit from the existing ordering.
173 // Otherwise, leave it as is.
174 if aggr_expr.order_sensitivity().is_beneficial() && !aggr_sort_reqs.is_empty()
175 {
176 let reqs = LexRequirement {
177 inner: concat_slices(prefix_requirement, &aggr_sort_reqs),
178 };
179
180 let prefix_requirement = LexRequirement {
181 inner: prefix_requirement.to_vec(),
182 };
183
184 if eq_properties.ordering_satisfy_requirement(&reqs) {
185 // Existing ordering satisfies the aggregator requirements:
186 aggr_expr.with_beneficial_ordering(true)?.map(Arc::new)
187 } else if eq_properties.ordering_satisfy_requirement(&LexRequirement {
188 inner: concat_slices(&prefix_requirement, &reverse_aggr_req),
189 }) {
190 // Converting to reverse enables more efficient execution
191 // given the existing ordering (if possible):
192 aggr_expr
193 .reverse_expr()
194 .map(Arc::new)
195 .unwrap_or(aggr_expr)
196 .with_beneficial_ordering(true)?
197 .map(Arc::new)
198 } else {
199 // There is no beneficial ordering present -- aggregation
200 // will still work albeit in a less efficient mode.
201 aggr_expr.with_beneficial_ordering(false)?.map(Arc::new)
202 }
203 .ok_or_else(|| {
204 plan_datafusion_err!(
205 "Expects an aggregate expression that can benefit from input ordering"
206 )
207 })
208 } else {
209 Ok(aggr_expr)
210 }
211 })
212 .collect()
213}