datafusion_physical_expr/intervals/cp_solver.rs
1// Licensed to the Apache Software Foundation (ASF) under one
2// or more contributor license agreements. See the NOTICE file
3// distributed with this work for additional information
4// regarding copyright ownership. The ASF licenses this file
5// to you under the Apache License, Version 2.0 (the
6// "License"); you may not use this file except in compliance
7// with the License. You may obtain a copy of the License at
8//
9// http://www.apache.org/licenses/LICENSE-2.0
10//
11// Unless required by applicable law or agreed to in writing,
12// software distributed under the License is distributed on an
13// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
14// KIND, either express or implied. See the License for the
15// specific language governing permissions and limitations
16// under the License.
17
18//! Constraint propagator/solver for custom [`PhysicalExpr`] graphs.
19//!
20//! The constraint propagator/solver in DataFusion uses interval arithmetic to
21//! perform mathematical operations on intervals, which represent a range of
22//! possible values rather than a single point value. This allows for the
23//! propagation of ranges through mathematical operations, and can be used to
24//! compute bounds for a complicated expression. The key idea is that by
25//! breaking down a complicated expression into simpler terms, and then
26//! combining the bounds for those simpler terms, one can obtain bounds for the
27//! overall expression.
28//!
29//! This way of using interval arithmetic to compute bounds for a complex
30//! expression by combining the bounds for the constituent terms within the
31//! original expression allows us to reason about the range of possible values
32//! of the expression. This information later can be used in range pruning of
33//! the provably unnecessary parts of `RecordBatch`es.
34//!
35//! # Example
36//!
37//! For example, consider a mathematical expression such as `x^2 + y = 4` \[1\].
38//! Since this expression would be a binary tree in [`PhysicalExpr`] notation,
39//! this type of an hierarchical computation is well-suited for a graph based
40//! implementation. In such an implementation, an equation system `f(x) = 0` is
41//! represented by a directed acyclic expression graph (DAEG).
42//!
43//! In order to use interval arithmetic to compute bounds for this expression,
44//! one would first determine intervals that represent the possible values of
45//! `x` and `y` Let's say that the interval for `x` is `[1, 2]` and the interval
46//! for `y` is `[-3, 1]`. In the chart below, you can see how the computation
47//! takes place.
48//!
49//! # References
50//!
51//! 1. Kabak, Mehmet Ozan. Analog Circuit Start-Up Behavior Analysis: An Interval
52//! Arithmetic Based Approach, Chapter 4. Stanford University, 2015.
53//! 2. Moore, Ramon E. Interval analysis. Vol. 4. Englewood Cliffs: Prentice-Hall, 1966.
54//! 3. F. Messine, "Deterministic global optimization using interval constraint
55//! propagation techniques," RAIRO-Operations Research, vol. 38, no. 04,
56//! pp. 277-293, 2004.
57//!
58//! # Illustration
59//!
60//! ## Computing bounds for an expression using interval arithmetic
61//!
62//! ```text
63//! +-----+ +-----+
64//! +----| + |----+ +----| + |----+
65//! | | | | | | | |
66//! | +-----+ | | +-----+ |
67//! | | | |
68//! +-----+ +-----+ +-----+ +-----+
69//! | 2 | | y | | 2 | [1, 4] | y |
70//! |[.] | | | |[.] | | |
71//! +-----+ +-----+ +-----+ +-----+
72//! | |
73//! | |
74//! +---+ +---+
75//! | x | [1, 2] | x | [1, 2]
76//! +---+ +---+
77//!
78//! (a) Bottom-up evaluation: Step 1 (b) Bottom up evaluation: Step 2
79//!
80//! [1 - 3, 4 + 1] = [-2, 5]
81//! +-----+ +-----+
82//! +----| + |----+ +----| + |----+
83//! | | | | | | | |
84//! | +-----+ | | +-----+ |
85//! | | | |
86//! +-----+ +-----+ +-----+ +-----+
87//! | 2 |[1, 4] | y | | 2 |[1, 4] | y |
88//! |[.] | | | |[.] | | |
89//! +-----+ +-----+ +-----+ +-----+
90//! | [-3, 1] | [-3, 1]
91//! | |
92//! +---+ +---+
93//! | x | [1, 2] | x | [1, 2]
94//! +---+ +---+
95//!
96//! (c) Bottom-up evaluation: Step 3 (d) Bottom-up evaluation: Step 4
97//! ```
98//!
99//! ## Top-down constraint propagation using inverse semantics
100//!
101//! ```text
102//! [-2, 5] ∩ [4, 4] = [4, 4] [4, 4]
103//! +-----+ +-----+
104//! +----| + |----+ +----| + |----+
105//! | | | | | | | |
106//! | +-----+ | | +-----+ |
107//! | | | |
108//! +-----+ +-----+ +-----+ +-----+
109//! | 2 | [1, 4] | y | | 2 | [1, 4] | y | [0, 1]*
110//! |[.] | | | |[.] | | |
111//! +-----+ +-----+ +-----+ +-----+
112//! | [-3, 1] |
113//! | |
114//! +---+ +---+
115//! | x | [1, 2] | x | [1, 2]
116//! +---+ +---+
117//!
118//! (a) Top-down propagation: Step 1 (b) Top-down propagation: Step 2
119//!
120//! [1 - 3, 4 + 1] = [-2, 5]
121//! +-----+ +-----+
122//! +----| + |----+ +----| + |----+
123//! | | | | | | | |
124//! | +-----+ | | +-----+ |
125//! | | | |
126//! +-----+ +-----+ +-----+ +-----+
127//! | 2 |[3, 4]** | y | | 2 |[3, 4] | y |
128//! |[.] | | | |[.] | | |
129//! +-----+ +-----+ +-----+ +-----+
130//! | [0, 1] | [-3, 1]
131//! | |
132//! +---+ +---+
133//! | x | [1, 2] | x | [sqrt(3), 2]***
134//! +---+ +---+
135//!
136//! (c) Top-down propagation: Step 3 (d) Top-down propagation: Step 4
137//!
138//! * [-3, 1] ∩ ([4, 4] - [1, 4]) = [0, 1]
139//! ** [1, 4] ∩ ([4, 4] - [0, 1]) = [3, 4]
140//! *** [1, 2] ∩ [sqrt(3), sqrt(4)] = [sqrt(3), 2]
141//! ```
142
143use std::collections::HashSet;
144use std::fmt::{Display, Formatter};
145use std::mem::{size_of, size_of_val};
146use std::sync::Arc;
147
148use super::utils::{
149 convert_duration_type_to_interval, convert_interval_type_to_duration, get_inverse_op,
150};
151use crate::expressions::{BinaryExpr, Literal};
152use crate::utils::{build_dag, ExprTreeNode};
153use crate::PhysicalExpr;
154
155use arrow::datatypes::{DataType, Schema};
156use datafusion_common::{internal_err, not_impl_err, Result};
157use datafusion_expr::interval_arithmetic::{apply_operator, satisfy_greater, Interval};
158use datafusion_expr::Operator;
159
160use petgraph::graph::NodeIndex;
161use petgraph::stable_graph::{DefaultIx, StableGraph};
162use petgraph::visit::{Bfs, Dfs, DfsPostOrder, EdgeRef};
163use petgraph::Outgoing;
164
165/// This object implements a directed acyclic expression graph (DAEG) that
166/// is used to compute ranges for expressions through interval arithmetic.
167#[derive(Clone, Debug)]
168pub struct ExprIntervalGraph {
169 graph: StableGraph<ExprIntervalGraphNode, usize>,
170 root: NodeIndex,
171}
172
173/// This object encapsulates all possible constraint propagation results.
174#[derive(PartialEq, Debug)]
175pub enum PropagationResult {
176 CannotPropagate,
177 Infeasible,
178 Success,
179}
180
181/// This is a node in the DAEG; it encapsulates a reference to the actual
182/// [`PhysicalExpr`] as well as an interval containing expression bounds.
183#[derive(Clone, Debug)]
184pub struct ExprIntervalGraphNode {
185 expr: Arc<dyn PhysicalExpr>,
186 interval: Interval,
187}
188
189impl PartialEq for ExprIntervalGraphNode {
190 fn eq(&self, other: &Self) -> bool {
191 self.expr.eq(&other.expr)
192 }
193}
194
195impl Display for ExprIntervalGraphNode {
196 fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
197 write!(f, "{}", self.expr)
198 }
199}
200
201impl ExprIntervalGraphNode {
202 /// Constructs a new DAEG node with an `[-∞, ∞]` range.
203 pub fn new_unbounded(expr: Arc<dyn PhysicalExpr>, dt: &DataType) -> Result<Self> {
204 Interval::make_unbounded(dt)
205 .map(|interval| ExprIntervalGraphNode { expr, interval })
206 }
207
208 /// Constructs a new DAEG node with the given range.
209 pub fn new_with_interval(expr: Arc<dyn PhysicalExpr>, interval: Interval) -> Self {
210 ExprIntervalGraphNode { expr, interval }
211 }
212
213 /// Get the interval object representing the range of the expression.
214 pub fn interval(&self) -> &Interval {
215 &self.interval
216 }
217
218 /// This function creates a DAEG node from DataFusion's [`ExprTreeNode`]
219 /// object. Literals are created with definite, singleton intervals while
220 /// any other expression starts with an indefinite interval (`[-∞, ∞]`).
221 pub fn make_node(node: &ExprTreeNode<NodeIndex>, schema: &Schema) -> Result<Self> {
222 let expr = Arc::clone(&node.expr);
223 if let Some(literal) = expr.as_any().downcast_ref::<Literal>() {
224 let value = literal.value();
225 Interval::try_new(value.clone(), value.clone())
226 .map(|interval| Self::new_with_interval(expr, interval))
227 } else {
228 expr.data_type(schema)
229 .and_then(|dt| Self::new_unbounded(expr, &dt))
230 }
231 }
232}
233
234/// This function refines intervals `left_child` and `right_child` by applying
235/// constraint propagation through `parent` via operation. The main idea is
236/// that we can shrink ranges of variables x and y using parent interval p.
237///
238/// Assuming that x,y and p has ranges `[xL, xU]`, `[yL, yU]`, and `[pL, pU]`, we
239/// apply the following operations:
240/// - For plus operation, specifically, we would first do
241/// - `[xL, xU]` <- (`[pL, pU]` - `[yL, yU]`) ∩ `[xL, xU]`, and then
242/// - `[yL, yU]` <- (`[pL, pU]` - `[xL, xU]`) ∩ `[yL, yU]`.
243/// - For minus operation, specifically, we would first do
244/// - `[xL, xU]` <- (`[yL, yU]` + `[pL, pU]`) ∩ `[xL, xU]`, and then
245/// - `[yL, yU]` <- (`[xL, xU]` - `[pL, pU]`) ∩ `[yL, yU]`.
246/// - For multiplication operation, specifically, we would first do
247/// - `[xL, xU]` <- (`[pL, pU]` / `[yL, yU]`) ∩ `[xL, xU]`, and then
248/// - `[yL, yU]` <- (`[pL, pU]` / `[xL, xU]`) ∩ `[yL, yU]`.
249/// - For division operation, specifically, we would first do
250/// - `[xL, xU]` <- (`[yL, yU]` * `[pL, pU]`) ∩ `[xL, xU]`, and then
251/// - `[yL, yU]` <- (`[xL, xU]` / `[pL, pU]`) ∩ `[yL, yU]`.
252pub fn propagate_arithmetic(
253 op: &Operator,
254 parent: &Interval,
255 left_child: &Interval,
256 right_child: &Interval,
257) -> Result<Option<(Interval, Interval)>> {
258 let inverse_op = get_inverse_op(*op)?;
259 match (left_child.data_type(), right_child.data_type()) {
260 // If we have a child whose type is a time interval (i.e. DataType::Interval),
261 // we need special handling since timestamp differencing results in a
262 // Duration type.
263 (DataType::Timestamp(..), DataType::Interval(_)) => {
264 propagate_time_interval_at_right(
265 left_child,
266 right_child,
267 parent,
268 op,
269 &inverse_op,
270 )
271 }
272 (DataType::Interval(_), DataType::Timestamp(..)) => {
273 propagate_time_interval_at_left(
274 left_child,
275 right_child,
276 parent,
277 op,
278 &inverse_op,
279 )
280 }
281 _ => {
282 // First, propagate to the left:
283 match apply_operator(&inverse_op, parent, right_child)?
284 .intersect(left_child)?
285 {
286 // Left is feasible:
287 Some(value) => Ok(
288 // Propagate to the right using the new left.
289 propagate_right(&value, parent, right_child, op, &inverse_op)?
290 .map(|right| (value, right)),
291 ),
292 // If the left child is infeasible, short-circuit.
293 None => Ok(None),
294 }
295 }
296 }
297}
298
299/// This function refines intervals `left_child` and `right_child` by applying
300/// comparison propagation through `parent` via operation. The main idea is
301/// that we can shrink ranges of variables x and y using parent interval p.
302/// Two intervals can be ordered in 6 ways for a Gt `>` operator:
303/// ```text
304/// (1): Infeasible, short-circuit
305/// left: | ================ |
306/// right: | ======================== |
307///
308/// (2): Update both interval
309/// left: | ====================== |
310/// right: | ====================== |
311/// |
312/// V
313/// left: | ======= |
314/// right: | ======= |
315///
316/// (3): Update left interval
317/// left: | ============================== |
318/// right: | ========== |
319/// |
320/// V
321/// left: | ===================== |
322/// right: | ========== |
323///
324/// (4): Update right interval
325/// left: | ========== |
326/// right: | =========================== |
327/// |
328/// V
329/// left: | ========== |
330/// right | ================== |
331///
332/// (5): No change
333/// left: | ============================ |
334/// right: | =================== |
335///
336/// (6): No change
337/// left: | ==================== |
338/// right: | =============== |
339///
340/// -inf --------------------------------------------------------------- +inf
341/// ```
342pub fn propagate_comparison(
343 op: &Operator,
344 parent: &Interval,
345 left_child: &Interval,
346 right_child: &Interval,
347) -> Result<Option<(Interval, Interval)>> {
348 if parent == &Interval::CERTAINLY_TRUE {
349 match op {
350 Operator::Eq => left_child.intersect(right_child).map(|result| {
351 result.map(|intersection| (intersection.clone(), intersection))
352 }),
353 Operator::Gt => satisfy_greater(left_child, right_child, true),
354 Operator::GtEq => satisfy_greater(left_child, right_child, false),
355 Operator::Lt => satisfy_greater(right_child, left_child, true)
356 .map(|t| t.map(reverse_tuple)),
357 Operator::LtEq => satisfy_greater(right_child, left_child, false)
358 .map(|t| t.map(reverse_tuple)),
359 _ => internal_err!(
360 "The operator must be a comparison operator to propagate intervals"
361 ),
362 }
363 } else if parent == &Interval::CERTAINLY_FALSE {
364 match op {
365 Operator::Eq => {
366 // TODO: Propagation is not possible until we support interval sets.
367 Ok(None)
368 }
369 Operator::Gt => satisfy_greater(right_child, left_child, false),
370 Operator::GtEq => satisfy_greater(right_child, left_child, true),
371 Operator::Lt => satisfy_greater(left_child, right_child, false)
372 .map(|t| t.map(reverse_tuple)),
373 Operator::LtEq => satisfy_greater(left_child, right_child, true)
374 .map(|t| t.map(reverse_tuple)),
375 _ => internal_err!(
376 "The operator must be a comparison operator to propagate intervals"
377 ),
378 }
379 } else {
380 // Uncertainty cannot change any end-point of the intervals.
381 Ok(None)
382 }
383}
384
385impl ExprIntervalGraph {
386 pub fn try_new(expr: Arc<dyn PhysicalExpr>, schema: &Schema) -> Result<Self> {
387 // Build the full graph:
388 let (root, graph) =
389 build_dag(expr, &|node| ExprIntervalGraphNode::make_node(node, schema))?;
390 Ok(Self { graph, root })
391 }
392
393 pub fn node_count(&self) -> usize {
394 self.graph.node_count()
395 }
396
397 /// Estimate size of bytes including `Self`.
398 pub fn size(&self) -> usize {
399 let node_memory_usage = self.graph.node_count()
400 * (size_of::<ExprIntervalGraphNode>() + size_of::<NodeIndex>());
401 let edge_memory_usage =
402 self.graph.edge_count() * (size_of::<usize>() + size_of::<NodeIndex>() * 2);
403
404 size_of_val(self) + node_memory_usage + edge_memory_usage
405 }
406
407 // Sometimes, we do not want to calculate and/or propagate intervals all
408 // way down to leaf expressions. For example, assume that we have a
409 // `SymmetricHashJoin` which has a child with an output ordering like:
410 //
411 // ```text
412 // PhysicalSortExpr {
413 // expr: BinaryExpr('a', +, 'b'),
414 // sort_option: ..
415 // }
416 // ```
417 //
418 // i.e. its output order comes from a clause like `ORDER BY a + b`. In such
419 // a case, we must calculate the interval for the `BinaryExpr(a, +, b)`
420 // instead of the columns inside this `BinaryExpr`, because this interval
421 // decides whether we prune or not. Therefore, children `PhysicalExpr`s of
422 // this `BinaryExpr` may be pruned for performance. The figure below
423 // explains this example visually.
424 //
425 // Note that we just remove the nodes from the DAEG, do not make any change
426 // to the plan itself.
427 //
428 // ```text
429 //
430 // +-----+ +-----+
431 // | GT | | GT |
432 // +--------| |-------+ +--------| |-------+
433 // | +-----+ | | +-----+ |
434 // | | | |
435 // +-----+ | +-----+ |
436 // |Cast | | |Cast | |
437 // | | | --\ | | |
438 // +-----+ | ---------- +-----+ |
439 // | | --/ | |
440 // | | | |
441 // +-----+ +-----+ +-----+ +-----+
442 // +--|Plus |--+ +--|Plus |--+ |Plus | +--|Plus |--+
443 // | | | | | | | | | | | | | |
444 // Prune from here | +-----+ | | +-----+ | +-----+ | +-----+ |
445 // ------------------------------------ | | | |
446 // | | | | | |
447 // +-----+ +-----+ +-----+ +-----+ +-----+ +-----+
448 // | a | | b | | c | | 2 | | c | | 2 |
449 // | | | | | | | | | | | |
450 // +-----+ +-----+ +-----+ +-----+ +-----+ +-----+
451 //
452 // ```
453
454 /// This function associates stable node indices with [`PhysicalExpr`]s so
455 /// that we can match `Arc<dyn PhysicalExpr>` and NodeIndex objects during
456 /// membership tests.
457 pub fn gather_node_indices(
458 &mut self,
459 exprs: &[Arc<dyn PhysicalExpr>],
460 ) -> Vec<(Arc<dyn PhysicalExpr>, usize)> {
461 let graph = &self.graph;
462 let mut bfs = Bfs::new(graph, self.root);
463 // We collect the node indices (usize) of [PhysicalExpr]s in the order
464 // given by argument `exprs`. To preserve this order, we initialize each
465 // expression's node index with usize::MAX, and then find the corresponding
466 // node indices by traversing the graph.
467 let mut removals = vec![];
468 let mut expr_node_indices = exprs
469 .iter()
470 .map(|e| (Arc::clone(e), usize::MAX))
471 .collect::<Vec<_>>();
472 while let Some(node) = bfs.next(graph) {
473 // Get the plan corresponding to this node:
474 let expr = &graph[node].expr;
475 // If the current expression is among `exprs`, slate its children
476 // for removal:
477 if let Some(value) = exprs.iter().position(|e| expr.eq(e)) {
478 // Update the node index of the associated `PhysicalExpr`:
479 expr_node_indices[value].1 = node.index();
480 for edge in graph.edges_directed(node, Outgoing) {
481 // Slate the child for removal, do not remove immediately.
482 removals.push(edge.id());
483 }
484 }
485 }
486 for edge_idx in removals {
487 self.graph.remove_edge(edge_idx);
488 }
489 // Get the set of node indices reachable from the root node:
490 let connected_nodes = self.connected_nodes();
491 // Remove nodes not connected to the root node:
492 self.graph
493 .retain_nodes(|_, index| connected_nodes.contains(&index));
494 expr_node_indices
495 }
496
497 /// Returns the set of node indices reachable from the root node via a
498 /// simple depth-first search.
499 fn connected_nodes(&self) -> HashSet<NodeIndex> {
500 let mut nodes = HashSet::new();
501 let mut dfs = Dfs::new(&self.graph, self.root);
502 while let Some(node) = dfs.next(&self.graph) {
503 nodes.insert(node);
504 }
505 nodes
506 }
507
508 /// Updates intervals for all expressions in the DAEG by successive
509 /// bottom-up and top-down traversals.
510 pub fn update_ranges(
511 &mut self,
512 leaf_bounds: &mut [(usize, Interval)],
513 given_range: Interval,
514 ) -> Result<PropagationResult> {
515 self.assign_intervals(leaf_bounds);
516 let bounds = self.evaluate_bounds()?;
517 // There are three possible cases to consider:
518 // (1) given_range ⊇ bounds => Nothing to propagate
519 // (2) ∅ ⊂ (given_range ∩ bounds) ⊂ bounds => Can propagate
520 // (3) Disjoint sets => Infeasible
521 if given_range.contains(bounds)? == Interval::CERTAINLY_TRUE {
522 // First case:
523 Ok(PropagationResult::CannotPropagate)
524 } else if bounds.contains(&given_range)? != Interval::CERTAINLY_FALSE {
525 // Second case:
526 let result = self.propagate_constraints(given_range);
527 self.update_intervals(leaf_bounds);
528 result
529 } else {
530 // Third case:
531 Ok(PropagationResult::Infeasible)
532 }
533 }
534
535 /// This function assigns given ranges to expressions in the DAEG.
536 /// The argument `assignments` associates indices of sought expressions
537 /// with their corresponding new ranges.
538 pub fn assign_intervals(&mut self, assignments: &[(usize, Interval)]) {
539 for (index, interval) in assignments {
540 let node_index = NodeIndex::from(*index as DefaultIx);
541 self.graph[node_index].interval = interval.clone();
542 }
543 }
544
545 /// This function fetches ranges of expressions from the DAEG. The argument
546 /// `assignments` associates indices of sought expressions with their ranges,
547 /// which this function modifies to reflect the intervals in the DAEG.
548 pub fn update_intervals(&self, assignments: &mut [(usize, Interval)]) {
549 for (index, interval) in assignments.iter_mut() {
550 let node_index = NodeIndex::from(*index as DefaultIx);
551 *interval = self.graph[node_index].interval.clone();
552 }
553 }
554
555 /// Computes bounds for an expression using interval arithmetic via a
556 /// bottom-up traversal.
557 ///
558 /// # Examples
559 ///
560 /// ```
561 /// use arrow::datatypes::DataType;
562 /// use arrow::datatypes::Field;
563 /// use arrow::datatypes::Schema;
564 /// use datafusion_common::ScalarValue;
565 /// use datafusion_expr::interval_arithmetic::Interval;
566 /// use datafusion_expr::Operator;
567 /// use datafusion_physical_expr::expressions::{BinaryExpr, Column, Literal};
568 /// use datafusion_physical_expr::intervals::cp_solver::ExprIntervalGraph;
569 /// use datafusion_physical_expr::PhysicalExpr;
570 /// use std::sync::Arc;
571 ///
572 /// let expr = Arc::new(BinaryExpr::new(
573 /// Arc::new(Column::new("gnz", 0)),
574 /// Operator::Plus,
575 /// Arc::new(Literal::new(ScalarValue::Int32(Some(10)))),
576 /// ));
577 ///
578 /// let schema = Schema::new(vec![Field::new("gnz".to_string(), DataType::Int32, true)]);
579 ///
580 /// let mut graph = ExprIntervalGraph::try_new(expr, &schema).unwrap();
581 /// // Do it once, while constructing.
582 /// let node_indices = graph.gather_node_indices(&[Arc::new(Column::new("gnz", 0))]);
583 /// let left_index = node_indices.get(0).unwrap().1;
584 ///
585 /// // Provide intervals for leaf variables (here, there is only one).
586 /// let intervals = vec![(left_index, Interval::make(Some(10), Some(20)).unwrap())];
587 ///
588 /// // Evaluate bounds for the composite expression:
589 /// graph.assign_intervals(&intervals);
590 /// assert_eq!(
591 /// graph.evaluate_bounds().unwrap(),
592 /// &Interval::make(Some(20), Some(30)).unwrap(),
593 /// )
594 /// ```
595 pub fn evaluate_bounds(&mut self) -> Result<&Interval> {
596 let mut dfs = DfsPostOrder::new(&self.graph, self.root);
597 while let Some(node) = dfs.next(&self.graph) {
598 let neighbors = self.graph.neighbors_directed(node, Outgoing);
599 let mut children_intervals = neighbors
600 .map(|child| self.graph[child].interval())
601 .collect::<Vec<_>>();
602 // If the current expression is a leaf, its interval should already
603 // be set externally, just continue with the evaluation procedure:
604 if !children_intervals.is_empty() {
605 // Reverse to align with `PhysicalExpr`'s children:
606 children_intervals.reverse();
607 self.graph[node].interval =
608 self.graph[node].expr.evaluate_bounds(&children_intervals)?;
609 }
610 }
611 Ok(self.graph[self.root].interval())
612 }
613
614 /// Updates/shrinks bounds for leaf expressions using interval arithmetic
615 /// via a top-down traversal.
616 fn propagate_constraints(
617 &mut self,
618 given_range: Interval,
619 ) -> Result<PropagationResult> {
620 // Adjust the root node with the given range:
621 if let Some(interval) = self.graph[self.root].interval.intersect(given_range)? {
622 self.graph[self.root].interval = interval;
623 } else {
624 return Ok(PropagationResult::Infeasible);
625 }
626
627 let mut bfs = Bfs::new(&self.graph, self.root);
628
629 while let Some(node) = bfs.next(&self.graph) {
630 let neighbors = self.graph.neighbors_directed(node, Outgoing);
631 let mut children = neighbors.collect::<Vec<_>>();
632 // If the current expression is a leaf, its range is now final.
633 // So, just continue with the propagation procedure:
634 if children.is_empty() {
635 continue;
636 }
637 // Reverse to align with `PhysicalExpr`'s children:
638 children.reverse();
639 let children_intervals = children
640 .iter()
641 .map(|child| self.graph[*child].interval())
642 .collect::<Vec<_>>();
643 let node_interval = self.graph[node].interval();
644 // Special case: true OR could in principle be propagated by 3 interval sets,
645 // (i.e. left true, or right true, or both true) however we do not support this yet.
646 if node_interval == &Interval::CERTAINLY_TRUE
647 && self.graph[node]
648 .expr
649 .as_any()
650 .downcast_ref::<BinaryExpr>()
651 .is_some_and(|expr| expr.op() == &Operator::Or)
652 {
653 return not_impl_err!("OR operator cannot yet propagate true intervals");
654 }
655 let propagated_intervals = self.graph[node]
656 .expr
657 .propagate_constraints(node_interval, &children_intervals)?;
658 if let Some(propagated_intervals) = propagated_intervals {
659 for (child, interval) in children.into_iter().zip(propagated_intervals) {
660 self.graph[child].interval = interval;
661 }
662 } else {
663 // The constraint is infeasible, report:
664 return Ok(PropagationResult::Infeasible);
665 }
666 }
667 Ok(PropagationResult::Success)
668 }
669
670 /// Returns the interval associated with the node at the given `index`.
671 pub fn get_interval(&self, index: usize) -> Interval {
672 self.graph[NodeIndex::new(index)].interval.clone()
673 }
674}
675
676/// This is a subfunction of the `propagate_arithmetic` function that propagates to the right child.
677fn propagate_right(
678 left: &Interval,
679 parent: &Interval,
680 right: &Interval,
681 op: &Operator,
682 inverse_op: &Operator,
683) -> Result<Option<Interval>> {
684 match op {
685 Operator::Minus => apply_operator(op, left, parent),
686 Operator::Plus => apply_operator(inverse_op, parent, left),
687 Operator::Divide => apply_operator(op, left, parent),
688 Operator::Multiply => apply_operator(inverse_op, parent, left),
689 _ => internal_err!("Interval arithmetic does not support the operator {}", op),
690 }?
691 .intersect(right)
692}
693
694/// During the propagation of [`Interval`] values on an [`ExprIntervalGraph`],
695/// if there exists a `timestamp - timestamp` operation, the result would be
696/// of type `Duration`. However, we may encounter a situation where a time interval
697/// is involved in an arithmetic operation with a `Duration` type. This function
698/// offers special handling for such cases, where the time interval resides on
699/// the left side of the operation.
700fn propagate_time_interval_at_left(
701 left_child: &Interval,
702 right_child: &Interval,
703 parent: &Interval,
704 op: &Operator,
705 inverse_op: &Operator,
706) -> Result<Option<(Interval, Interval)>> {
707 // We check if the child's time interval(s) has a non-zero month or day field(s).
708 // If so, we return it as is without propagating. Otherwise, we first convert
709 // the time intervals to the `Duration` type, then propagate, and then convert
710 // the bounds to time intervals again.
711 let result = if let Some(duration) = convert_interval_type_to_duration(left_child) {
712 match apply_operator(inverse_op, parent, right_child)?.intersect(duration)? {
713 Some(value) => {
714 let left = convert_duration_type_to_interval(&value);
715 let right = propagate_right(&value, parent, right_child, op, inverse_op)?;
716 match (left, right) {
717 (Some(left), Some(right)) => Some((left, right)),
718 _ => None,
719 }
720 }
721 None => None,
722 }
723 } else {
724 propagate_right(left_child, parent, right_child, op, inverse_op)?
725 .map(|right| (left_child.clone(), right))
726 };
727 Ok(result)
728}
729
730/// During the propagation of [`Interval`] values on an [`ExprIntervalGraph`],
731/// if there exists a `timestamp - timestamp` operation, the result would be
732/// of type `Duration`. However, we may encounter a situation where a time interval
733/// is involved in an arithmetic operation with a `Duration` type. This function
734/// offers special handling for such cases, where the time interval resides on
735/// the right side of the operation.
736fn propagate_time_interval_at_right(
737 left_child: &Interval,
738 right_child: &Interval,
739 parent: &Interval,
740 op: &Operator,
741 inverse_op: &Operator,
742) -> Result<Option<(Interval, Interval)>> {
743 // We check if the child's time interval(s) has a non-zero month or day field(s).
744 // If so, we return it as is without propagating. Otherwise, we first convert
745 // the time intervals to the `Duration` type, then propagate, and then convert
746 // the bounds to time intervals again.
747 let result = if let Some(duration) = convert_interval_type_to_duration(right_child) {
748 match apply_operator(inverse_op, parent, &duration)?.intersect(left_child)? {
749 Some(value) => {
750 propagate_right(left_child, parent, &duration, op, inverse_op)?
751 .and_then(|right| convert_duration_type_to_interval(&right))
752 .map(|right| (value, right))
753 }
754 None => None,
755 }
756 } else {
757 apply_operator(inverse_op, parent, right_child)?
758 .intersect(left_child)?
759 .map(|value| (value, right_child.clone()))
760 };
761 Ok(result)
762}
763
764fn reverse_tuple<T, U>((first, second): (T, U)) -> (U, T) {
765 (second, first)
766}
767
768#[cfg(test)]
769mod tests {
770 use super::*;
771 use crate::expressions::{BinaryExpr, Column};
772 use crate::intervals::test_utils::gen_conjunctive_numerical_expr;
773
774 use arrow::array::types::{IntervalDayTime, IntervalMonthDayNano};
775 use arrow::datatypes::{Field, TimeUnit};
776 use datafusion_common::ScalarValue;
777
778 use itertools::Itertools;
779 use rand::rngs::StdRng;
780 use rand::{Rng, SeedableRng};
781 use rstest::*;
782
783 #[allow(clippy::too_many_arguments)]
784 fn experiment(
785 expr: Arc<dyn PhysicalExpr>,
786 exprs_with_interval: (Arc<dyn PhysicalExpr>, Arc<dyn PhysicalExpr>),
787 left_interval: Interval,
788 right_interval: Interval,
789 left_expected: Interval,
790 right_expected: Interval,
791 result: PropagationResult,
792 schema: &Schema,
793 ) -> Result<()> {
794 let col_stats = [
795 (Arc::clone(&exprs_with_interval.0), left_interval),
796 (Arc::clone(&exprs_with_interval.1), right_interval),
797 ];
798 let expected = [
799 (Arc::clone(&exprs_with_interval.0), left_expected),
800 (Arc::clone(&exprs_with_interval.1), right_expected),
801 ];
802 let mut graph = ExprIntervalGraph::try_new(expr, schema)?;
803 let expr_indexes = graph.gather_node_indices(
804 &col_stats.iter().map(|(e, _)| Arc::clone(e)).collect_vec(),
805 );
806
807 let mut col_stat_nodes = col_stats
808 .iter()
809 .zip(expr_indexes.iter())
810 .map(|((_, interval), (_, index))| (*index, interval.clone()))
811 .collect_vec();
812 let expected_nodes = expected
813 .iter()
814 .zip(expr_indexes.iter())
815 .map(|((_, interval), (_, index))| (*index, interval.clone()))
816 .collect_vec();
817
818 let exp_result =
819 graph.update_ranges(&mut col_stat_nodes[..], Interval::CERTAINLY_TRUE)?;
820 assert_eq!(exp_result, result);
821 col_stat_nodes.iter().zip(expected_nodes.iter()).for_each(
822 |((_, calculated_interval_node), (_, expected))| {
823 // NOTE: These randomized tests only check for conservative containment,
824 // not openness/closedness of endpoints.
825
826 // Calculated bounds are relaxed by 1 to cover all strict and
827 // and non-strict comparison cases since we have only closed bounds.
828 let one = ScalarValue::new_one(&expected.data_type()).unwrap();
829 assert!(
830 calculated_interval_node.lower()
831 <= &expected.lower().add(&one).unwrap(),
832 "{}",
833 format!(
834 "Calculated {} must be less than or equal {}",
835 calculated_interval_node.lower(),
836 expected.lower()
837 )
838 );
839 assert!(
840 calculated_interval_node.upper()
841 >= &expected.upper().sub(&one).unwrap(),
842 "{}",
843 format!(
844 "Calculated {} must be greater than or equal {}",
845 calculated_interval_node.upper(),
846 expected.upper()
847 )
848 );
849 },
850 );
851 Ok(())
852 }
853
854 macro_rules! generate_cases {
855 ($FUNC_NAME:ident, $TYPE:ty, $SCALAR:ident) => {
856 fn $FUNC_NAME<const ASC: bool>(
857 expr: Arc<dyn PhysicalExpr>,
858 left_col: Arc<dyn PhysicalExpr>,
859 right_col: Arc<dyn PhysicalExpr>,
860 seed: u64,
861 expr_left: $TYPE,
862 expr_right: $TYPE,
863 ) -> Result<()> {
864 let mut r = StdRng::seed_from_u64(seed);
865
866 let (left_given, right_given, left_expected, right_expected) = if ASC {
867 let left = r.random_range((0 as $TYPE)..(1000 as $TYPE));
868 let right = r.random_range((0 as $TYPE)..(1000 as $TYPE));
869 (
870 (Some(left), None),
871 (Some(right), None),
872 (Some(<$TYPE>::max(left, right + expr_left)), None),
873 (Some(<$TYPE>::max(right, left + expr_right)), None),
874 )
875 } else {
876 let left = r.random_range((0 as $TYPE)..(1000 as $TYPE));
877 let right = r.random_range((0 as $TYPE)..(1000 as $TYPE));
878 (
879 (None, Some(left)),
880 (None, Some(right)),
881 (None, Some(<$TYPE>::min(left, right + expr_left))),
882 (None, Some(<$TYPE>::min(right, left + expr_right))),
883 )
884 };
885
886 experiment(
887 expr,
888 (left_col.clone(), right_col.clone()),
889 Interval::make(left_given.0, left_given.1).unwrap(),
890 Interval::make(right_given.0, right_given.1).unwrap(),
891 Interval::make(left_expected.0, left_expected.1).unwrap(),
892 Interval::make(right_expected.0, right_expected.1).unwrap(),
893 PropagationResult::Success,
894 &Schema::new(vec![
895 Field::new(
896 left_col.as_any().downcast_ref::<Column>().unwrap().name(),
897 DataType::$SCALAR,
898 true,
899 ),
900 Field::new(
901 right_col.as_any().downcast_ref::<Column>().unwrap().name(),
902 DataType::$SCALAR,
903 true,
904 ),
905 ]),
906 )
907 }
908 };
909 }
910 generate_cases!(generate_case_i32, i32, Int32);
911 generate_cases!(generate_case_i64, i64, Int64);
912 generate_cases!(generate_case_f32, f32, Float32);
913 generate_cases!(generate_case_f64, f64, Float64);
914
915 #[test]
916 fn testing_not_possible() -> Result<()> {
917 let left_col = Arc::new(Column::new("left_watermark", 0));
918 let right_col = Arc::new(Column::new("right_watermark", 0));
919
920 // left_watermark > right_watermark + 5
921 let left_and_1 = Arc::new(BinaryExpr::new(
922 Arc::clone(&left_col) as Arc<dyn PhysicalExpr>,
923 Operator::Plus,
924 Arc::new(Literal::new(ScalarValue::Int32(Some(5)))),
925 ));
926 let expr = Arc::new(BinaryExpr::new(
927 left_and_1,
928 Operator::Gt,
929 Arc::clone(&right_col) as Arc<dyn PhysicalExpr>,
930 ));
931 experiment(
932 expr,
933 (
934 Arc::clone(&left_col) as Arc<dyn PhysicalExpr>,
935 Arc::clone(&right_col) as Arc<dyn PhysicalExpr>,
936 ),
937 Interval::make(Some(10_i32), Some(20_i32))?,
938 Interval::make(Some(100), None)?,
939 Interval::make(Some(10), Some(20))?,
940 Interval::make(Some(100), None)?,
941 PropagationResult::Infeasible,
942 &Schema::new(vec![
943 Field::new(
944 left_col.as_any().downcast_ref::<Column>().unwrap().name(),
945 DataType::Int32,
946 true,
947 ),
948 Field::new(
949 right_col.as_any().downcast_ref::<Column>().unwrap().name(),
950 DataType::Int32,
951 true,
952 ),
953 ]),
954 )
955 }
956
957 macro_rules! integer_float_case_1 {
958 ($TEST_FUNC_NAME:ident, $GENERATE_CASE_FUNC_NAME:ident, $TYPE:ty, $SCALAR:ident) => {
959 #[rstest]
960 #[test]
961 fn $TEST_FUNC_NAME(
962 #[values(0, 1, 2, 3, 4, 12, 32, 314, 3124, 123, 125, 211, 215, 4123)]
963 seed: u64,
964 #[values(Operator::Gt, Operator::GtEq)] greater_op: Operator,
965 #[values(Operator::Lt, Operator::LtEq)] less_op: Operator,
966 ) -> Result<()> {
967 let left_col = Arc::new(Column::new("left_watermark", 0));
968 let right_col = Arc::new(Column::new("right_watermark", 0));
969
970 // left_watermark + 1 > right_watermark + 11 AND left_watermark + 3 < right_watermark + 33
971 let expr = gen_conjunctive_numerical_expr(
972 left_col.clone(),
973 right_col.clone(),
974 (
975 Operator::Plus,
976 Operator::Plus,
977 Operator::Plus,
978 Operator::Plus,
979 ),
980 ScalarValue::$SCALAR(Some(1 as $TYPE)),
981 ScalarValue::$SCALAR(Some(11 as $TYPE)),
982 ScalarValue::$SCALAR(Some(3 as $TYPE)),
983 ScalarValue::$SCALAR(Some(33 as $TYPE)),
984 (greater_op, less_op),
985 );
986 // l > r + 10 AND r > l - 30
987 let l_gt_r = 10 as $TYPE;
988 let r_gt_l = -30 as $TYPE;
989 $GENERATE_CASE_FUNC_NAME::<true>(
990 expr.clone(),
991 left_col.clone(),
992 right_col.clone(),
993 seed,
994 l_gt_r,
995 r_gt_l,
996 )?;
997 // Descending tests
998 // r < l - 10 AND l < r + 30
999 let r_lt_l = -l_gt_r;
1000 let l_lt_r = -r_gt_l;
1001 $GENERATE_CASE_FUNC_NAME::<false>(
1002 expr, left_col, right_col, seed, l_lt_r, r_lt_l,
1003 )
1004 }
1005 };
1006 }
1007
1008 integer_float_case_1!(case_1_i32, generate_case_i32, i32, Int32);
1009 integer_float_case_1!(case_1_i64, generate_case_i64, i64, Int64);
1010 integer_float_case_1!(case_1_f64, generate_case_f64, f64, Float64);
1011 integer_float_case_1!(case_1_f32, generate_case_f32, f32, Float32);
1012
1013 macro_rules! integer_float_case_2 {
1014 ($TEST_FUNC_NAME:ident, $GENERATE_CASE_FUNC_NAME:ident, $TYPE:ty, $SCALAR:ident) => {
1015 #[rstest]
1016 #[test]
1017 fn $TEST_FUNC_NAME(
1018 #[values(0, 1, 2, 3, 4, 12, 32, 314, 3124, 123, 125, 211, 215, 4123)]
1019 seed: u64,
1020 #[values(Operator::Gt, Operator::GtEq)] greater_op: Operator,
1021 #[values(Operator::Lt, Operator::LtEq)] less_op: Operator,
1022 ) -> Result<()> {
1023 let left_col = Arc::new(Column::new("left_watermark", 0));
1024 let right_col = Arc::new(Column::new("right_watermark", 0));
1025
1026 // left_watermark - 1 > right_watermark + 5 AND left_watermark + 3 < right_watermark + 10
1027 let expr = gen_conjunctive_numerical_expr(
1028 left_col.clone(),
1029 right_col.clone(),
1030 (
1031 Operator::Minus,
1032 Operator::Plus,
1033 Operator::Plus,
1034 Operator::Plus,
1035 ),
1036 ScalarValue::$SCALAR(Some(1 as $TYPE)),
1037 ScalarValue::$SCALAR(Some(5 as $TYPE)),
1038 ScalarValue::$SCALAR(Some(3 as $TYPE)),
1039 ScalarValue::$SCALAR(Some(10 as $TYPE)),
1040 (greater_op, less_op),
1041 );
1042 // l > r + 6 AND r > l - 7
1043 let l_gt_r = 6 as $TYPE;
1044 let r_gt_l = -7 as $TYPE;
1045 $GENERATE_CASE_FUNC_NAME::<true>(
1046 expr.clone(),
1047 left_col.clone(),
1048 right_col.clone(),
1049 seed,
1050 l_gt_r,
1051 r_gt_l,
1052 )?;
1053 // Descending tests
1054 // r < l - 6 AND l < r + 7
1055 let r_lt_l = -l_gt_r;
1056 let l_lt_r = -r_gt_l;
1057 $GENERATE_CASE_FUNC_NAME::<false>(
1058 expr, left_col, right_col, seed, l_lt_r, r_lt_l,
1059 )
1060 }
1061 };
1062 }
1063
1064 integer_float_case_2!(case_2_i32, generate_case_i32, i32, Int32);
1065 integer_float_case_2!(case_2_i64, generate_case_i64, i64, Int64);
1066 integer_float_case_2!(case_2_f64, generate_case_f64, f64, Float64);
1067 integer_float_case_2!(case_2_f32, generate_case_f32, f32, Float32);
1068
1069 macro_rules! integer_float_case_3 {
1070 ($TEST_FUNC_NAME:ident, $GENERATE_CASE_FUNC_NAME:ident, $TYPE:ty, $SCALAR:ident) => {
1071 #[rstest]
1072 #[test]
1073 fn $TEST_FUNC_NAME(
1074 #[values(0, 1, 2, 3, 4, 12, 32, 314, 3124, 123, 125, 211, 215, 4123)]
1075 seed: u64,
1076 #[values(Operator::Gt, Operator::GtEq)] greater_op: Operator,
1077 #[values(Operator::Lt, Operator::LtEq)] less_op: Operator,
1078 ) -> Result<()> {
1079 let left_col = Arc::new(Column::new("left_watermark", 0));
1080 let right_col = Arc::new(Column::new("right_watermark", 0));
1081
1082 // left_watermark - 1 > right_watermark + 5 AND left_watermark - 3 < right_watermark + 10
1083 let expr = gen_conjunctive_numerical_expr(
1084 left_col.clone(),
1085 right_col.clone(),
1086 (
1087 Operator::Minus,
1088 Operator::Plus,
1089 Operator::Minus,
1090 Operator::Plus,
1091 ),
1092 ScalarValue::$SCALAR(Some(1 as $TYPE)),
1093 ScalarValue::$SCALAR(Some(5 as $TYPE)),
1094 ScalarValue::$SCALAR(Some(3 as $TYPE)),
1095 ScalarValue::$SCALAR(Some(10 as $TYPE)),
1096 (greater_op, less_op),
1097 );
1098 // l > r + 6 AND r > l - 13
1099 let l_gt_r = 6 as $TYPE;
1100 let r_gt_l = -13 as $TYPE;
1101 $GENERATE_CASE_FUNC_NAME::<true>(
1102 expr.clone(),
1103 left_col.clone(),
1104 right_col.clone(),
1105 seed,
1106 l_gt_r,
1107 r_gt_l,
1108 )?;
1109 // Descending tests
1110 // r < l - 6 AND l < r + 13
1111 let r_lt_l = -l_gt_r;
1112 let l_lt_r = -r_gt_l;
1113 $GENERATE_CASE_FUNC_NAME::<false>(
1114 expr, left_col, right_col, seed, l_lt_r, r_lt_l,
1115 )
1116 }
1117 };
1118 }
1119
1120 integer_float_case_3!(case_3_i32, generate_case_i32, i32, Int32);
1121 integer_float_case_3!(case_3_i64, generate_case_i64, i64, Int64);
1122 integer_float_case_3!(case_3_f64, generate_case_f64, f64, Float64);
1123 integer_float_case_3!(case_3_f32, generate_case_f32, f32, Float32);
1124
1125 macro_rules! integer_float_case_4 {
1126 ($TEST_FUNC_NAME:ident, $GENERATE_CASE_FUNC_NAME:ident, $TYPE:ty, $SCALAR:ident) => {
1127 #[rstest]
1128 #[test]
1129 fn $TEST_FUNC_NAME(
1130 #[values(0, 1, 2, 3, 4, 12, 32, 314, 3124, 123, 125, 211, 215, 4123)]
1131 seed: u64,
1132 #[values(Operator::Gt, Operator::GtEq)] greater_op: Operator,
1133 #[values(Operator::Lt, Operator::LtEq)] less_op: Operator,
1134 ) -> Result<()> {
1135 let left_col = Arc::new(Column::new("left_watermark", 0));
1136 let right_col = Arc::new(Column::new("right_watermark", 0));
1137
1138 // left_watermark - 10 > right_watermark - 5 AND left_watermark - 30 < right_watermark - 3
1139 let expr = gen_conjunctive_numerical_expr(
1140 left_col.clone(),
1141 right_col.clone(),
1142 (
1143 Operator::Minus,
1144 Operator::Minus,
1145 Operator::Minus,
1146 Operator::Plus,
1147 ),
1148 ScalarValue::$SCALAR(Some(10 as $TYPE)),
1149 ScalarValue::$SCALAR(Some(5 as $TYPE)),
1150 ScalarValue::$SCALAR(Some(3 as $TYPE)),
1151 ScalarValue::$SCALAR(Some(10 as $TYPE)),
1152 (greater_op, less_op),
1153 );
1154 // l > r + 5 AND r > l - 13
1155 let l_gt_r = 5 as $TYPE;
1156 let r_gt_l = -13 as $TYPE;
1157 $GENERATE_CASE_FUNC_NAME::<true>(
1158 expr.clone(),
1159 left_col.clone(),
1160 right_col.clone(),
1161 seed,
1162 l_gt_r,
1163 r_gt_l,
1164 )?;
1165 // Descending tests
1166 // r < l - 5 AND l < r + 13
1167 let r_lt_l = -l_gt_r;
1168 let l_lt_r = -r_gt_l;
1169 $GENERATE_CASE_FUNC_NAME::<false>(
1170 expr, left_col, right_col, seed, l_lt_r, r_lt_l,
1171 )
1172 }
1173 };
1174 }
1175
1176 integer_float_case_4!(case_4_i32, generate_case_i32, i32, Int32);
1177 integer_float_case_4!(case_4_i64, generate_case_i64, i64, Int64);
1178 integer_float_case_4!(case_4_f64, generate_case_f64, f64, Float64);
1179 integer_float_case_4!(case_4_f32, generate_case_f32, f32, Float32);
1180
1181 macro_rules! integer_float_case_5 {
1182 ($TEST_FUNC_NAME:ident, $GENERATE_CASE_FUNC_NAME:ident, $TYPE:ty, $SCALAR:ident) => {
1183 #[rstest]
1184 #[test]
1185 fn $TEST_FUNC_NAME(
1186 #[values(0, 1, 2, 3, 4, 12, 32, 314, 3124, 123, 125, 211, 215, 4123)]
1187 seed: u64,
1188 #[values(Operator::Gt, Operator::GtEq)] greater_op: Operator,
1189 #[values(Operator::Lt, Operator::LtEq)] less_op: Operator,
1190 ) -> Result<()> {
1191 let left_col = Arc::new(Column::new("left_watermark", 0));
1192 let right_col = Arc::new(Column::new("right_watermark", 0));
1193
1194 // left_watermark - 10 > right_watermark - 5 AND left_watermark - 30 < right_watermark - 3
1195 let expr = gen_conjunctive_numerical_expr(
1196 left_col.clone(),
1197 right_col.clone(),
1198 (
1199 Operator::Minus,
1200 Operator::Minus,
1201 Operator::Minus,
1202 Operator::Minus,
1203 ),
1204 ScalarValue::$SCALAR(Some(10 as $TYPE)),
1205 ScalarValue::$SCALAR(Some(5 as $TYPE)),
1206 ScalarValue::$SCALAR(Some(30 as $TYPE)),
1207 ScalarValue::$SCALAR(Some(3 as $TYPE)),
1208 (greater_op, less_op),
1209 );
1210 // l > r + 5 AND r > l - 27
1211 let l_gt_r = 5 as $TYPE;
1212 let r_gt_l = -27 as $TYPE;
1213 $GENERATE_CASE_FUNC_NAME::<true>(
1214 expr.clone(),
1215 left_col.clone(),
1216 right_col.clone(),
1217 seed,
1218 l_gt_r,
1219 r_gt_l,
1220 )?;
1221 // Descending tests
1222 // r < l - 5 AND l < r + 27
1223 let r_lt_l = -l_gt_r;
1224 let l_lt_r = -r_gt_l;
1225 $GENERATE_CASE_FUNC_NAME::<false>(
1226 expr, left_col, right_col, seed, l_lt_r, r_lt_l,
1227 )
1228 }
1229 };
1230 }
1231
1232 integer_float_case_5!(case_5_i32, generate_case_i32, i32, Int32);
1233 integer_float_case_5!(case_5_i64, generate_case_i64, i64, Int64);
1234 integer_float_case_5!(case_5_f64, generate_case_f64, f64, Float64);
1235 integer_float_case_5!(case_5_f32, generate_case_f32, f32, Float32);
1236
1237 #[test]
1238 fn test_gather_node_indices_dont_remove() -> Result<()> {
1239 // Expression: a@0 + b@1 + 1 > a@0 - b@1, given a@0 + b@1.
1240 // Do not remove a@0 or b@1, only remove edges since a@0 - b@1 also
1241 // depends on leaf nodes a@0 and b@1.
1242 let left_expr = Arc::new(BinaryExpr::new(
1243 Arc::new(BinaryExpr::new(
1244 Arc::new(Column::new("a", 0)),
1245 Operator::Plus,
1246 Arc::new(Column::new("b", 1)),
1247 )),
1248 Operator::Plus,
1249 Arc::new(Literal::new(ScalarValue::Int32(Some(1)))),
1250 ));
1251
1252 let right_expr = Arc::new(BinaryExpr::new(
1253 Arc::new(Column::new("a", 0)),
1254 Operator::Minus,
1255 Arc::new(Column::new("b", 1)),
1256 ));
1257 let expr = Arc::new(BinaryExpr::new(left_expr, Operator::Gt, right_expr));
1258 let mut graph = ExprIntervalGraph::try_new(
1259 expr,
1260 &Schema::new(vec![
1261 Field::new("a", DataType::Int32, true),
1262 Field::new("b", DataType::Int32, true),
1263 ]),
1264 )
1265 .unwrap();
1266 // Define a test leaf node.
1267 let leaf_node = Arc::new(BinaryExpr::new(
1268 Arc::new(Column::new("a", 0)),
1269 Operator::Plus,
1270 Arc::new(Column::new("b", 1)),
1271 ));
1272 // Store the current node count.
1273 let prev_node_count = graph.node_count();
1274 // Gather the index of node in the expression graph that match the test leaf node.
1275 graph.gather_node_indices(&[leaf_node]);
1276 // Store the final node count.
1277 let final_node_count = graph.node_count();
1278 // Assert that the final node count is equal the previous node count.
1279 // This means we did not remove any node.
1280 assert_eq!(prev_node_count, final_node_count);
1281 Ok(())
1282 }
1283
1284 #[test]
1285 fn test_gather_node_indices_remove() -> Result<()> {
1286 // Expression: a@0 + b@1 + 1 > y@0 - z@1, given a@0 + b@1.
1287 // We expect to remove two nodes since we do not need a@ and b@.
1288 let left_expr = Arc::new(BinaryExpr::new(
1289 Arc::new(BinaryExpr::new(
1290 Arc::new(Column::new("a", 0)),
1291 Operator::Plus,
1292 Arc::new(Column::new("b", 1)),
1293 )),
1294 Operator::Plus,
1295 Arc::new(Literal::new(ScalarValue::Int32(Some(1)))),
1296 ));
1297
1298 let right_expr = Arc::new(BinaryExpr::new(
1299 Arc::new(Column::new("y", 0)),
1300 Operator::Minus,
1301 Arc::new(Column::new("z", 1)),
1302 ));
1303 let expr = Arc::new(BinaryExpr::new(left_expr, Operator::Gt, right_expr));
1304 let mut graph = ExprIntervalGraph::try_new(
1305 expr,
1306 &Schema::new(vec![
1307 Field::new("a", DataType::Int32, true),
1308 Field::new("b", DataType::Int32, true),
1309 Field::new("y", DataType::Int32, true),
1310 Field::new("z", DataType::Int32, true),
1311 ]),
1312 )
1313 .unwrap();
1314 // Define a test leaf node.
1315 let leaf_node = Arc::new(BinaryExpr::new(
1316 Arc::new(Column::new("a", 0)),
1317 Operator::Plus,
1318 Arc::new(Column::new("b", 1)),
1319 ));
1320 // Store the current node count.
1321 let prev_node_count = graph.node_count();
1322 // Gather the index of node in the expression graph that match the test leaf node.
1323 graph.gather_node_indices(&[leaf_node]);
1324 // Store the final node count.
1325 let final_node_count = graph.node_count();
1326 // Assert that the final node count is two less than the previous node
1327 // count; i.e. that we did remove two nodes.
1328 assert_eq!(prev_node_count, final_node_count + 2);
1329 Ok(())
1330 }
1331
1332 #[test]
1333 fn test_gather_node_indices_remove_one() -> Result<()> {
1334 // Expression: a@0 + b@1 + 1 > a@0 - z@1, given a@0 + b@1.
1335 // We expect to remove one nodesince we still need a@ but not b@.
1336 let left_expr = Arc::new(BinaryExpr::new(
1337 Arc::new(BinaryExpr::new(
1338 Arc::new(Column::new("a", 0)),
1339 Operator::Plus,
1340 Arc::new(Column::new("b", 1)),
1341 )),
1342 Operator::Plus,
1343 Arc::new(Literal::new(ScalarValue::Int32(Some(1)))),
1344 ));
1345
1346 let right_expr = Arc::new(BinaryExpr::new(
1347 Arc::new(Column::new("a", 0)),
1348 Operator::Minus,
1349 Arc::new(Column::new("z", 1)),
1350 ));
1351 let expr = Arc::new(BinaryExpr::new(left_expr, Operator::Gt, right_expr));
1352 let mut graph = ExprIntervalGraph::try_new(
1353 expr,
1354 &Schema::new(vec![
1355 Field::new("a", DataType::Int32, true),
1356 Field::new("b", DataType::Int32, true),
1357 Field::new("z", DataType::Int32, true),
1358 ]),
1359 )
1360 .unwrap();
1361 // Define a test leaf node.
1362 let leaf_node = Arc::new(BinaryExpr::new(
1363 Arc::new(Column::new("a", 0)),
1364 Operator::Plus,
1365 Arc::new(Column::new("b", 1)),
1366 ));
1367 // Store the current node count.
1368 let prev_node_count = graph.node_count();
1369 // Gather the index of node in the expression graph that match the test leaf node.
1370 graph.gather_node_indices(&[leaf_node]);
1371 // Store the final node count.
1372 let final_node_count = graph.node_count();
1373 // Assert that the final node count is one less than the previous node
1374 // count; i.e. that we did remove two nodes.
1375 assert_eq!(prev_node_count, final_node_count + 1);
1376 Ok(())
1377 }
1378
1379 #[test]
1380 fn test_gather_node_indices_cannot_provide() -> Result<()> {
1381 // Expression: a@0 + 1 + b@1 > y@0 - z@1 -> provide a@0 + b@1
1382 // TODO: We expect nodes a@0 and b@1 to be pruned, and intervals to be provided from the a@0 + b@1 node.
1383 // However, we do not have an exact node for a@0 + b@1 due to the binary tree structure of the expressions.
1384 // Pruning and interval providing for BinaryExpr expressions are more challenging without exact matches.
1385 // Currently, we only support exact matches for BinaryExprs, but we plan to extend support beyond exact matches in the future.
1386 let left_expr = Arc::new(BinaryExpr::new(
1387 Arc::new(BinaryExpr::new(
1388 Arc::new(Column::new("a", 0)),
1389 Operator::Plus,
1390 Arc::new(Literal::new(ScalarValue::Int32(Some(1)))),
1391 )),
1392 Operator::Plus,
1393 Arc::new(Column::new("b", 1)),
1394 ));
1395
1396 let right_expr = Arc::new(BinaryExpr::new(
1397 Arc::new(Column::new("y", 0)),
1398 Operator::Minus,
1399 Arc::new(Column::new("z", 1)),
1400 ));
1401 let expr = Arc::new(BinaryExpr::new(left_expr, Operator::Gt, right_expr));
1402 let mut graph = ExprIntervalGraph::try_new(
1403 expr,
1404 &Schema::new(vec![
1405 Field::new("a", DataType::Int32, true),
1406 Field::new("b", DataType::Int32, true),
1407 Field::new("y", DataType::Int32, true),
1408 Field::new("z", DataType::Int32, true),
1409 ]),
1410 )
1411 .unwrap();
1412 // Define a test leaf node.
1413 let leaf_node = Arc::new(BinaryExpr::new(
1414 Arc::new(Column::new("a", 0)),
1415 Operator::Plus,
1416 Arc::new(Column::new("b", 1)),
1417 ));
1418 // Store the current node count.
1419 let prev_node_count = graph.node_count();
1420 // Gather the index of node in the expression graph that match the test leaf node.
1421 graph.gather_node_indices(&[leaf_node]);
1422 // Store the final node count.
1423 let final_node_count = graph.node_count();
1424 // Assert that the final node count is equal the previous node count (i.e., no node was pruned).
1425 assert_eq!(prev_node_count, final_node_count);
1426 Ok(())
1427 }
1428
1429 #[test]
1430 fn test_propagate_constraints_singleton_interval_at_right() -> Result<()> {
1431 let expression = BinaryExpr::new(
1432 Arc::new(Column::new("ts_column", 0)),
1433 Operator::Plus,
1434 Arc::new(Literal::new(ScalarValue::new_interval_mdn(0, 1, 321))),
1435 );
1436 let parent = Interval::try_new(
1437 // 15.10.2020 - 10:11:12.000_000_321 AM
1438 ScalarValue::TimestampNanosecond(Some(1_602_756_672_000_000_321), None),
1439 // 16.10.2020 - 10:11:12.000_000_321 AM
1440 ScalarValue::TimestampNanosecond(Some(1_602_843_072_000_000_321), None),
1441 )?;
1442 let left_child = Interval::try_new(
1443 // 10.10.2020 - 10:11:12 AM
1444 ScalarValue::TimestampNanosecond(Some(1_602_324_672_000_000_000), None),
1445 // 20.10.2020 - 10:11:12 AM
1446 ScalarValue::TimestampNanosecond(Some(1_603_188_672_000_000_000), None),
1447 )?;
1448 let right_child = Interval::try_new(
1449 // 1 day 321 ns
1450 ScalarValue::IntervalMonthDayNano(Some(IntervalMonthDayNano {
1451 months: 0,
1452 days: 1,
1453 nanoseconds: 321,
1454 })),
1455 // 1 day 321 ns
1456 ScalarValue::IntervalMonthDayNano(Some(IntervalMonthDayNano {
1457 months: 0,
1458 days: 1,
1459 nanoseconds: 321,
1460 })),
1461 )?;
1462 let children = vec![&left_child, &right_child];
1463 let result = expression
1464 .propagate_constraints(&parent, &children)?
1465 .unwrap();
1466
1467 assert_eq!(
1468 vec![
1469 Interval::try_new(
1470 // 14.10.2020 - 10:11:12 AM
1471 ScalarValue::TimestampNanosecond(
1472 Some(1_602_670_272_000_000_000),
1473 None
1474 ),
1475 // 15.10.2020 - 10:11:12 AM
1476 ScalarValue::TimestampNanosecond(
1477 Some(1_602_756_672_000_000_000),
1478 None
1479 ),
1480 )?,
1481 Interval::try_new(
1482 // 1 day 321 ns in Duration type
1483 ScalarValue::IntervalMonthDayNano(Some(IntervalMonthDayNano {
1484 months: 0,
1485 days: 1,
1486 nanoseconds: 321,
1487 })),
1488 // 1 day 321 ns in Duration type
1489 ScalarValue::IntervalMonthDayNano(Some(IntervalMonthDayNano {
1490 months: 0,
1491 days: 1,
1492 nanoseconds: 321,
1493 })),
1494 )?
1495 ],
1496 result
1497 );
1498
1499 Ok(())
1500 }
1501
1502 #[test]
1503 fn test_propagate_constraints_column_interval_at_left() -> Result<()> {
1504 let expression = BinaryExpr::new(
1505 Arc::new(Column::new("interval_column", 1)),
1506 Operator::Plus,
1507 Arc::new(Column::new("ts_column", 0)),
1508 );
1509 let parent = Interval::try_new(
1510 // 15.10.2020 - 10:11:12 AM
1511 ScalarValue::TimestampMillisecond(Some(1_602_756_672_000), None),
1512 // 16.10.2020 - 10:11:12 AM
1513 ScalarValue::TimestampMillisecond(Some(1_602_843_072_000), None),
1514 )?;
1515 let right_child = Interval::try_new(
1516 // 10.10.2020 - 10:11:12 AM
1517 ScalarValue::TimestampMillisecond(Some(1_602_324_672_000), None),
1518 // 20.10.2020 - 10:11:12 AM
1519 ScalarValue::TimestampMillisecond(Some(1_603_188_672_000), None),
1520 )?;
1521 let left_child = Interval::try_new(
1522 // 2 days in millisecond
1523 ScalarValue::IntervalDayTime(Some(IntervalDayTime {
1524 days: 0,
1525 milliseconds: 172_800_000,
1526 })),
1527 // 10 days in millisecond
1528 ScalarValue::IntervalDayTime(Some(IntervalDayTime {
1529 days: 0,
1530 milliseconds: 864_000_000,
1531 })),
1532 )?;
1533 let children = vec![&left_child, &right_child];
1534 let result = expression
1535 .propagate_constraints(&parent, &children)?
1536 .unwrap();
1537
1538 assert_eq!(
1539 vec![
1540 Interval::try_new(
1541 // 2 days in millisecond
1542 ScalarValue::IntervalDayTime(Some(IntervalDayTime {
1543 days: 0,
1544 milliseconds: 172_800_000,
1545 })),
1546 // 6 days
1547 ScalarValue::IntervalDayTime(Some(IntervalDayTime {
1548 days: 0,
1549 milliseconds: 518_400_000,
1550 })),
1551 )?,
1552 Interval::try_new(
1553 // 10.10.2020 - 10:11:12 AM
1554 ScalarValue::TimestampMillisecond(Some(1_602_324_672_000), None),
1555 // 14.10.2020 - 10:11:12 AM
1556 ScalarValue::TimestampMillisecond(Some(1_602_670_272_000), None),
1557 )?
1558 ],
1559 result
1560 );
1561
1562 Ok(())
1563 }
1564
1565 #[test]
1566 fn test_propagate_comparison() -> Result<()> {
1567 // In the examples below:
1568 // `left` is unbounded: [?, ?],
1569 // `right` is known to be [1000,1000]
1570 // so `left` < `right` results in no new knowledge of `right` but knowing that `left` is now < 1000:` [?, 999]
1571 let left = Interval::make_unbounded(&DataType::Int64)?;
1572 let right = Interval::make(Some(1000_i64), Some(1000_i64))?;
1573 assert_eq!(
1574 (Some((
1575 Interval::make(None, Some(999_i64))?,
1576 Interval::make(Some(1000_i64), Some(1000_i64))?,
1577 ))),
1578 propagate_comparison(
1579 &Operator::Lt,
1580 &Interval::CERTAINLY_TRUE,
1581 &left,
1582 &right
1583 )?
1584 );
1585
1586 let left =
1587 Interval::make_unbounded(&DataType::Timestamp(TimeUnit::Nanosecond, None))?;
1588 let right = Interval::try_new(
1589 ScalarValue::TimestampNanosecond(Some(1000), None),
1590 ScalarValue::TimestampNanosecond(Some(1000), None),
1591 )?;
1592 assert_eq!(
1593 (Some((
1594 Interval::try_new(
1595 ScalarValue::try_from(&DataType::Timestamp(
1596 TimeUnit::Nanosecond,
1597 None
1598 ))
1599 .unwrap(),
1600 ScalarValue::TimestampNanosecond(Some(999), None),
1601 )?,
1602 Interval::try_new(
1603 ScalarValue::TimestampNanosecond(Some(1000), None),
1604 ScalarValue::TimestampNanosecond(Some(1000), None),
1605 )?
1606 ))),
1607 propagate_comparison(
1608 &Operator::Lt,
1609 &Interval::CERTAINLY_TRUE,
1610 &left,
1611 &right
1612 )?
1613 );
1614
1615 let left = Interval::make_unbounded(&DataType::Timestamp(
1616 TimeUnit::Nanosecond,
1617 Some("+05:00".into()),
1618 ))?;
1619 let right = Interval::try_new(
1620 ScalarValue::TimestampNanosecond(Some(1000), Some("+05:00".into())),
1621 ScalarValue::TimestampNanosecond(Some(1000), Some("+05:00".into())),
1622 )?;
1623 assert_eq!(
1624 (Some((
1625 Interval::try_new(
1626 ScalarValue::try_from(&DataType::Timestamp(
1627 TimeUnit::Nanosecond,
1628 Some("+05:00".into()),
1629 ))
1630 .unwrap(),
1631 ScalarValue::TimestampNanosecond(Some(999), Some("+05:00".into())),
1632 )?,
1633 Interval::try_new(
1634 ScalarValue::TimestampNanosecond(Some(1000), Some("+05:00".into())),
1635 ScalarValue::TimestampNanosecond(Some(1000), Some("+05:00".into())),
1636 )?
1637 ))),
1638 propagate_comparison(
1639 &Operator::Lt,
1640 &Interval::CERTAINLY_TRUE,
1641 &left,
1642 &right
1643 )?
1644 );
1645
1646 Ok(())
1647 }
1648
1649 #[test]
1650 fn test_propagate_or() -> Result<()> {
1651 let expr = Arc::new(BinaryExpr::new(
1652 Arc::new(Column::new("a", 0)),
1653 Operator::Or,
1654 Arc::new(Column::new("b", 1)),
1655 ));
1656 let parent = Interval::CERTAINLY_FALSE;
1657 let children_set = vec![
1658 vec![&Interval::CERTAINLY_FALSE, &Interval::UNCERTAIN],
1659 vec![&Interval::UNCERTAIN, &Interval::CERTAINLY_FALSE],
1660 vec![&Interval::CERTAINLY_FALSE, &Interval::CERTAINLY_FALSE],
1661 vec![&Interval::UNCERTAIN, &Interval::UNCERTAIN],
1662 ];
1663 for children in children_set {
1664 assert_eq!(
1665 expr.propagate_constraints(&parent, &children)?.unwrap(),
1666 vec![Interval::CERTAINLY_FALSE, Interval::CERTAINLY_FALSE],
1667 );
1668 }
1669
1670 let parent = Interval::CERTAINLY_FALSE;
1671 let children_set = vec![
1672 vec![&Interval::CERTAINLY_TRUE, &Interval::UNCERTAIN],
1673 vec![&Interval::UNCERTAIN, &Interval::CERTAINLY_TRUE],
1674 ];
1675 for children in children_set {
1676 assert_eq!(expr.propagate_constraints(&parent, &children)?, None,);
1677 }
1678
1679 let parent = Interval::CERTAINLY_TRUE;
1680 let children = vec![&Interval::CERTAINLY_FALSE, &Interval::UNCERTAIN];
1681 assert_eq!(
1682 expr.propagate_constraints(&parent, &children)?.unwrap(),
1683 vec![Interval::CERTAINLY_FALSE, Interval::CERTAINLY_TRUE]
1684 );
1685
1686 let parent = Interval::CERTAINLY_TRUE;
1687 let children = vec![&Interval::UNCERTAIN, &Interval::UNCERTAIN];
1688 assert_eq!(
1689 expr.propagate_constraints(&parent, &children)?.unwrap(),
1690 // Empty means unchanged intervals.
1691 vec![]
1692 );
1693
1694 Ok(())
1695 }
1696
1697 #[test]
1698 fn test_propagate_certainly_false_and() -> Result<()> {
1699 let expr = Arc::new(BinaryExpr::new(
1700 Arc::new(Column::new("a", 0)),
1701 Operator::And,
1702 Arc::new(Column::new("b", 1)),
1703 ));
1704 let parent = Interval::CERTAINLY_FALSE;
1705 let children_and_results_set = vec![
1706 (
1707 vec![&Interval::CERTAINLY_TRUE, &Interval::UNCERTAIN],
1708 vec![Interval::CERTAINLY_TRUE, Interval::CERTAINLY_FALSE],
1709 ),
1710 (
1711 vec![&Interval::UNCERTAIN, &Interval::CERTAINLY_TRUE],
1712 vec![Interval::CERTAINLY_FALSE, Interval::CERTAINLY_TRUE],
1713 ),
1714 (
1715 vec![&Interval::UNCERTAIN, &Interval::UNCERTAIN],
1716 // Empty means unchanged intervals.
1717 vec![],
1718 ),
1719 (
1720 vec![&Interval::CERTAINLY_FALSE, &Interval::UNCERTAIN],
1721 vec![],
1722 ),
1723 ];
1724 for (children, result) in children_and_results_set {
1725 assert_eq!(
1726 expr.propagate_constraints(&parent, &children)?.unwrap(),
1727 result
1728 );
1729 }
1730
1731 Ok(())
1732 }
1733}