datafusion_physical_expr/
scalar_function.rsuse std::any::Any;
use std::fmt::{self, Debug, Formatter};
use std::hash::{Hash, Hasher};
use std::sync::Arc;
use crate::physical_expr::{down_cast_any_ref, physical_exprs_equal};
use crate::PhysicalExpr;
use arrow::datatypes::{DataType, Schema};
use arrow::record_batch::RecordBatch;
use datafusion_common::{internal_err, DFSchema, Result};
use datafusion_expr::interval_arithmetic::Interval;
use datafusion_expr::sort_properties::ExprProperties;
use datafusion_expr::type_coercion::functions::data_types_with_scalar_udf;
use datafusion_expr::{expr_vec_fmt, ColumnarValue, Expr, ScalarUDF};
pub struct ScalarFunctionExpr {
    fun: Arc<ScalarUDF>,
    name: String,
    args: Vec<Arc<dyn PhysicalExpr>>,
    return_type: DataType,
    nullable: bool,
}
impl Debug for ScalarFunctionExpr {
    fn fmt(&self, f: &mut Formatter) -> fmt::Result {
        f.debug_struct("ScalarFunctionExpr")
            .field("fun", &"<FUNC>")
            .field("name", &self.name)
            .field("args", &self.args)
            .field("return_type", &self.return_type)
            .finish()
    }
}
impl ScalarFunctionExpr {
    pub fn new(
        name: &str,
        fun: Arc<ScalarUDF>,
        args: Vec<Arc<dyn PhysicalExpr>>,
        return_type: DataType,
    ) -> Self {
        Self {
            fun,
            name: name.to_owned(),
            args,
            return_type,
            nullable: true,
        }
    }
    pub fn fun(&self) -> &ScalarUDF {
        &self.fun
    }
    pub fn name(&self) -> &str {
        &self.name
    }
    pub fn args(&self) -> &[Arc<dyn PhysicalExpr>] {
        &self.args
    }
    pub fn return_type(&self) -> &DataType {
        &self.return_type
    }
    pub fn with_nullable(mut self, nullable: bool) -> Self {
        self.nullable = nullable;
        self
    }
    pub fn nullable(&self) -> bool {
        self.nullable
    }
}
impl fmt::Display for ScalarFunctionExpr {
    fn fmt(&self, f: &mut Formatter) -> fmt::Result {
        write!(f, "{}({})", self.name, expr_vec_fmt!(self.args))
    }
}
impl PhysicalExpr for ScalarFunctionExpr {
    fn as_any(&self) -> &dyn Any {
        self
    }
    fn data_type(&self, _input_schema: &Schema) -> Result<DataType> {
        Ok(self.return_type.clone())
    }
    fn nullable(&self, _input_schema: &Schema) -> Result<bool> {
        Ok(self.nullable)
    }
    fn evaluate(&self, batch: &RecordBatch) -> Result<ColumnarValue> {
        let inputs = self
            .args
            .iter()
            .map(|e| e.evaluate(batch))
            .collect::<Result<Vec<_>>>()?;
        let output = match self.args.is_empty() {
            true => self.fun.invoke_no_args(batch.num_rows()),
            false => self.fun.invoke(&inputs),
        }?;
        if let ColumnarValue::Array(array) = &output {
            if array.len() != batch.num_rows() {
                return internal_err!("UDF returned a different number of rows than expected. Expected: {}, Got: {}",
                        batch.num_rows(), array.len());
            }
        }
        Ok(output)
    }
    fn children(&self) -> Vec<&Arc<dyn PhysicalExpr>> {
        self.args.iter().collect()
    }
    fn with_new_children(
        self: Arc<Self>,
        children: Vec<Arc<dyn PhysicalExpr>>,
    ) -> Result<Arc<dyn PhysicalExpr>> {
        Ok(Arc::new(
            ScalarFunctionExpr::new(
                &self.name,
                Arc::clone(&self.fun),
                children,
                self.return_type().clone(),
            )
            .with_nullable(self.nullable),
        ))
    }
    fn evaluate_bounds(&self, children: &[&Interval]) -> Result<Interval> {
        self.fun.evaluate_bounds(children)
    }
    fn propagate_constraints(
        &self,
        interval: &Interval,
        children: &[&Interval],
    ) -> Result<Option<Vec<Interval>>> {
        self.fun.propagate_constraints(interval, children)
    }
    fn dyn_hash(&self, state: &mut dyn Hasher) {
        let mut s = state;
        self.name.hash(&mut s);
        self.args.hash(&mut s);
        self.return_type.hash(&mut s);
        }
    fn get_properties(&self, children: &[ExprProperties]) -> Result<ExprProperties> {
        let sort_properties = self.fun.output_ordering(children)?;
        let children_range = children
            .iter()
            .map(|props| &props.range)
            .collect::<Vec<_>>();
        let range = self.fun().evaluate_bounds(&children_range)?;
        Ok(ExprProperties {
            sort_properties,
            range,
        })
    }
}
impl PartialEq<dyn Any> for ScalarFunctionExpr {
    fn eq(&self, other: &dyn Any) -> bool {
        down_cast_any_ref(other)
            .downcast_ref::<Self>()
            .map(|x| {
                self.name == x.name
                    && physical_exprs_equal(&self.args, &x.args)
                    && self.return_type == x.return_type
            })
            .unwrap_or(false)
    }
}
pub fn create_physical_expr(
    fun: &ScalarUDF,
    input_phy_exprs: &[Arc<dyn PhysicalExpr>],
    input_schema: &Schema,
    args: &[Expr],
    input_dfschema: &DFSchema,
) -> Result<Arc<dyn PhysicalExpr>> {
    let input_expr_types = input_phy_exprs
        .iter()
        .map(|e| e.data_type(input_schema))
        .collect::<Result<Vec<_>>>()?;
    data_types_with_scalar_udf(&input_expr_types, fun)?;
    let return_type =
        fun.return_type_from_exprs(args, input_dfschema, &input_expr_types)?;
    Ok(Arc::new(
        ScalarFunctionExpr::new(
            fun.name(),
            Arc::new(fun.clone()),
            input_phy_exprs.to_vec(),
            return_type,
        )
        .with_nullable(fun.is_nullable(args, input_dfschema)),
    ))
}