1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! Defines physical expressions that can evaluated at runtime during query execution

use std::any::Any;
use std::fmt::Debug;
use std::ops::BitAnd;
use std::sync::Arc;

use crate::aggregate::utils::down_cast_any_ref;
use crate::{AggregateExpr, PhysicalExpr};
use arrow::array::{Array, Int64Array};
use arrow::compute;
use arrow::datatypes::DataType;
use arrow::{array::ArrayRef, datatypes::Field};
use arrow_array::cast::AsArray;
use arrow_array::types::Int64Type;
use arrow_array::PrimitiveArray;
use arrow_buffer::BooleanBuffer;
use datafusion_common::{downcast_value, ScalarValue};
use datafusion_common::{DataFusionError, Result};
use datafusion_expr::{Accumulator, EmitTo, GroupsAccumulator};

use crate::expressions::format_state_name;

use super::groups_accumulator::accumulate::accumulate_indices;

/// COUNT aggregate expression
/// Returns the amount of non-null values of the given expression.
#[derive(Debug, Clone)]
pub struct Count {
    name: String,
    data_type: DataType,
    nullable: bool,
    /// Input exprs
    ///
    /// For `COUNT(c1)` this is `[c1]`
    /// For `COUNT(c1, c2)` this is `[c1, c2]`
    exprs: Vec<Arc<dyn PhysicalExpr>>,
}

impl Count {
    /// Create a new COUNT aggregate function.
    pub fn new(
        expr: Arc<dyn PhysicalExpr>,
        name: impl Into<String>,
        data_type: DataType,
    ) -> Self {
        Self {
            name: name.into(),
            exprs: vec![expr],
            data_type,
            nullable: true,
        }
    }

    pub fn new_with_multiple_exprs(
        exprs: Vec<Arc<dyn PhysicalExpr>>,
        name: impl Into<String>,
        data_type: DataType,
    ) -> Self {
        Self {
            name: name.into(),
            exprs,
            data_type,
            nullable: true,
        }
    }
}

/// An accumulator to compute the counts of [`PrimitiveArray<T>`].
/// Stores values as native types, and does overflow checking
///
/// Unlike most other accumulators, COUNT never produces NULLs. If no
/// non-null values are seen in any group the output is 0. Thus, this
/// accumulator has no additional null or seen filter tracking.
#[derive(Debug)]
struct CountGroupsAccumulator {
    /// Count per group.
    ///
    /// Note this is an i64 and not a u64 (or usize) because the
    /// output type of count is `DataType::Int64`. Thus by using `i64`
    /// for the counts, the output [`Int64Array`] can be created
    /// without copy.
    counts: Vec<i64>,
}

impl CountGroupsAccumulator {
    pub fn new() -> Self {
        Self { counts: vec![] }
    }
}

impl GroupsAccumulator for CountGroupsAccumulator {
    fn update_batch(
        &mut self,
        values: &[ArrayRef],
        group_indices: &[usize],
        opt_filter: Option<&arrow_array::BooleanArray>,
        total_num_groups: usize,
    ) -> Result<()> {
        assert_eq!(values.len(), 1, "single argument to update_batch");
        let values = &values[0];

        // Add one to each group's counter for each non null, non
        // filtered value
        self.counts.resize(total_num_groups, 0);
        accumulate_indices(
            group_indices,
            values.logical_nulls().as_ref(),
            opt_filter,
            |group_index| {
                self.counts[group_index] += 1;
            },
        );

        Ok(())
    }

    fn merge_batch(
        &mut self,
        values: &[ArrayRef],
        group_indices: &[usize],
        opt_filter: Option<&arrow_array::BooleanArray>,
        total_num_groups: usize,
    ) -> Result<()> {
        assert_eq!(values.len(), 1, "one argument to merge_batch");
        // first batch is counts, second is partial sums
        let partial_counts = values[0].as_primitive::<Int64Type>();

        // intermediate counts are always created as non null
        assert_eq!(partial_counts.null_count(), 0);
        let partial_counts = partial_counts.values();

        // Adds the counts with the partial counts
        self.counts.resize(total_num_groups, 0);
        match opt_filter {
            Some(filter) => filter
                .iter()
                .zip(group_indices.iter())
                .zip(partial_counts.iter())
                .for_each(|((filter_value, &group_index), partial_count)| {
                    if let Some(true) = filter_value {
                        self.counts[group_index] += partial_count;
                    }
                }),
            None => group_indices.iter().zip(partial_counts.iter()).for_each(
                |(&group_index, partial_count)| {
                    self.counts[group_index] += partial_count;
                },
            ),
        }

        Ok(())
    }

    fn evaluate(&mut self, emit_to: EmitTo) -> Result<ArrayRef> {
        let counts = emit_to.take_needed(&mut self.counts);

        // Count is always non null (null inputs just don't contribute to the overall values)
        let nulls = None;
        let array = PrimitiveArray::<Int64Type>::new(counts.into(), nulls);

        Ok(Arc::new(array))
    }

    // return arrays for counts
    fn state(&mut self, emit_to: EmitTo) -> Result<Vec<ArrayRef>> {
        let counts = emit_to.take_needed(&mut self.counts);
        let counts: PrimitiveArray<Int64Type> = Int64Array::from(counts); // zero copy, no nulls
        Ok(vec![Arc::new(counts) as ArrayRef])
    }

    fn size(&self) -> usize {
        self.counts.capacity() * std::mem::size_of::<usize>()
    }
}

/// count null values for multiple columns
/// for each row if one column value is null, then null_count + 1
fn null_count_for_multiple_cols(values: &[ArrayRef]) -> usize {
    if values.len() > 1 {
        let result_bool_buf: Option<BooleanBuffer> = values
            .iter()
            .map(|a| a.logical_nulls())
            .fold(None, |acc, b| match (acc, b) {
                (Some(acc), Some(b)) => Some(acc.bitand(b.inner())),
                (Some(acc), None) => Some(acc),
                (None, Some(b)) => Some(b.into_inner()),
                _ => None,
            });
        result_bool_buf.map_or(0, |b| values[0].len() - b.count_set_bits())
    } else {
        values[0]
            .logical_nulls()
            .map_or(0, |nulls| nulls.null_count())
    }
}

impl AggregateExpr for Count {
    /// Return a reference to Any that can be used for downcasting
    fn as_any(&self) -> &dyn Any {
        self
    }

    fn field(&self) -> Result<Field> {
        Ok(Field::new(&self.name, DataType::Int64, self.nullable))
    }

    fn state_fields(&self) -> Result<Vec<Field>> {
        Ok(vec![Field::new(
            format_state_name(&self.name, "count"),
            DataType::Int64,
            true,
        )])
    }

    fn expressions(&self) -> Vec<Arc<dyn PhysicalExpr>> {
        self.exprs.clone()
    }

    fn create_accumulator(&self) -> Result<Box<dyn Accumulator>> {
        Ok(Box::new(CountAccumulator::new()))
    }

    fn name(&self) -> &str {
        &self.name
    }

    fn groups_accumulator_supported(&self) -> bool {
        // groups accumulator only supports `COUNT(c1)`, not
        // `COUNT(c1, c2)`, etc
        self.exprs.len() == 1
    }

    fn reverse_expr(&self) -> Option<Arc<dyn AggregateExpr>> {
        Some(Arc::new(self.clone()))
    }

    fn create_sliding_accumulator(&self) -> Result<Box<dyn Accumulator>> {
        Ok(Box::new(CountAccumulator::new()))
    }

    fn create_groups_accumulator(&self) -> Result<Box<dyn GroupsAccumulator>> {
        // instantiate specialized accumulator
        Ok(Box::new(CountGroupsAccumulator::new()))
    }
}

impl PartialEq<dyn Any> for Count {
    fn eq(&self, other: &dyn Any) -> bool {
        down_cast_any_ref(other)
            .downcast_ref::<Self>()
            .map(|x| {
                self.name == x.name
                    && self.data_type == x.data_type
                    && self.nullable == x.nullable
                    && self.exprs.len() == x.exprs.len()
                    && self
                        .exprs
                        .iter()
                        .zip(x.exprs.iter())
                        .all(|(expr1, expr2)| expr1.eq(expr2))
            })
            .unwrap_or(false)
    }
}

#[derive(Debug)]
struct CountAccumulator {
    count: i64,
}

impl CountAccumulator {
    /// new count accumulator
    pub fn new() -> Self {
        Self { count: 0 }
    }
}

impl Accumulator for CountAccumulator {
    fn state(&mut self) -> Result<Vec<ScalarValue>> {
        Ok(vec![ScalarValue::Int64(Some(self.count))])
    }

    fn update_batch(&mut self, values: &[ArrayRef]) -> Result<()> {
        let array = &values[0];
        self.count += (array.len() - null_count_for_multiple_cols(values)) as i64;
        Ok(())
    }

    fn retract_batch(&mut self, values: &[ArrayRef]) -> Result<()> {
        let array = &values[0];
        self.count -= (array.len() - null_count_for_multiple_cols(values)) as i64;
        Ok(())
    }

    fn merge_batch(&mut self, states: &[ArrayRef]) -> Result<()> {
        let counts = downcast_value!(states[0], Int64Array);
        let delta = &compute::sum(counts);
        if let Some(d) = delta {
            self.count += *d;
        }
        Ok(())
    }

    fn evaluate(&mut self) -> Result<ScalarValue> {
        Ok(ScalarValue::Int64(Some(self.count)))
    }

    fn supports_retract_batch(&self) -> bool {
        true
    }

    fn size(&self) -> usize {
        std::mem::size_of_val(self)
    }
}