1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! Physical exec for aggregate window function expressions.

use std::any::Any;
use std::iter::IntoIterator;
use std::ops::Range;
use std::sync::Arc;

use arrow::array::Array;
use arrow::compute::SortOptions;
use arrow::record_batch::RecordBatch;
use arrow::{array::ArrayRef, datatypes::Field};

use datafusion_common::Result;
use datafusion_common::ScalarValue;
use datafusion_expr::{WindowFrame, WindowFrameUnits};

use crate::window::window_expr::reverse_order_bys;
use crate::window::SlidingAggregateWindowExpr;
use crate::{expressions::PhysicalSortExpr, PhysicalExpr};
use crate::{window::WindowExpr, AggregateExpr};

use super::window_frame_state::WindowFrameContext;

/// A window expr that takes the form of an aggregate function
#[derive(Debug)]
pub struct AggregateWindowExpr {
    aggregate: Arc<dyn AggregateExpr>,
    partition_by: Vec<Arc<dyn PhysicalExpr>>,
    order_by: Vec<PhysicalSortExpr>,
    window_frame: Arc<WindowFrame>,
}

impl AggregateWindowExpr {
    /// create a new aggregate window function expression
    pub fn new(
        aggregate: Arc<dyn AggregateExpr>,
        partition_by: &[Arc<dyn PhysicalExpr>],
        order_by: &[PhysicalSortExpr],
        window_frame: Arc<WindowFrame>,
    ) -> Self {
        Self {
            aggregate,
            partition_by: partition_by.to_vec(),
            order_by: order_by.to_vec(),
            window_frame,
        }
    }

    /// Get aggregate expr of AggregateWindowExpr
    pub fn get_aggregate_expr(&self) -> &Arc<dyn AggregateExpr> {
        &self.aggregate
    }
}

/// peer based evaluation based on the fact that batch is pre-sorted given the sort columns
/// and then per partition point we'll evaluate the peer group (e.g. SUM or MAX gives the same
/// results for peers) and concatenate the results.

impl WindowExpr for AggregateWindowExpr {
    /// Return a reference to Any that can be used for downcasting
    fn as_any(&self) -> &dyn Any {
        self
    }

    fn field(&self) -> Result<Field> {
        self.aggregate.field()
    }

    fn name(&self) -> &str {
        self.aggregate.name()
    }

    fn expressions(&self) -> Vec<Arc<dyn PhysicalExpr>> {
        self.aggregate.expressions()
    }

    fn evaluate(&self, batch: &RecordBatch) -> Result<ArrayRef> {
        let sort_options: Vec<SortOptions> =
            self.order_by.iter().map(|o| o.options).collect();
        let mut row_wise_results: Vec<ScalarValue> = vec![];

        let mut accumulator = self.aggregate.create_accumulator()?;
        let length = batch.num_rows();
        let (values, order_bys) = self.get_values_orderbys(batch)?;

        let mut window_frame_ctx = WindowFrameContext::new(&self.window_frame);
        let mut last_range = Range { start: 0, end: 0 };

        // We iterate on each row to perform a running calculation.
        // First, cur_range is calculated, then it is compared with last_range.
        for i in 0..length {
            let cur_range =
                window_frame_ctx.calculate_range(&order_bys, &sort_options, length, i)?;
            let value = if cur_range.end == cur_range.start {
                // We produce None if the window is empty.
                ScalarValue::try_from(self.aggregate.field()?.data_type())?
            } else {
                // Accumulate any new rows that have entered the window:
                let update_bound = cur_range.end - last_range.end;
                if update_bound > 0 {
                    let update: Vec<ArrayRef> = values
                        .iter()
                        .map(|v| v.slice(last_range.end, update_bound))
                        .collect();
                    accumulator.update_batch(&update)?
                }
                accumulator.evaluate()?
            };
            row_wise_results.push(value);
            last_range = cur_range;
        }

        ScalarValue::iter_to_array(row_wise_results.into_iter())
    }

    fn partition_by(&self) -> &[Arc<dyn PhysicalExpr>] {
        &self.partition_by
    }

    fn order_by(&self) -> &[PhysicalSortExpr] {
        &self.order_by
    }

    fn get_window_frame(&self) -> &Arc<WindowFrame> {
        &self.window_frame
    }

    fn get_reverse_expr(&self) -> Option<Arc<dyn WindowExpr>> {
        self.aggregate.reverse_expr().map(|reverse_expr| {
            let reverse_window_frame = self.window_frame.reverse();
            if reverse_window_frame.start_bound.is_unbounded() {
                Arc::new(AggregateWindowExpr::new(
                    reverse_expr,
                    &self.partition_by.clone(),
                    &reverse_order_bys(&self.order_by),
                    Arc::new(self.window_frame.reverse()),
                )) as _
            } else {
                Arc::new(SlidingAggregateWindowExpr::new(
                    reverse_expr,
                    &self.partition_by.clone(),
                    &reverse_order_bys(&self.order_by),
                    Arc::new(self.window_frame.reverse()),
                )) as _
            }
        })
    }

    fn uses_bounded_memory(&self) -> bool {
        // NOTE: Currently, groups queries do not support the bounded memory variant.
        self.aggregate.supports_bounded_execution()
            && !self.window_frame.start_bound.is_unbounded()
            && !self.window_frame.end_bound.is_unbounded()
            && !matches!(self.window_frame.units, WindowFrameUnits::Groups)
    }
}