1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! Physical exec for aggregate window function expressions.

use std::any::Any;
use std::iter::IntoIterator;
use std::ops::Range;
use std::sync::Arc;

use arrow::array::Array;
use arrow::compute::{concat, SortOptions};
use arrow::record_batch::RecordBatch;
use arrow::{array::ArrayRef, datatypes::Field};

use datafusion_common::ScalarValue;
use datafusion_common::{DataFusionError, Result};
use datafusion_expr::{Accumulator, WindowFrame, WindowFrameUnits};

use crate::window::window_expr::{reverse_order_bys, WindowFn, WindowFunctionState};
use crate::window::{
    AggregateWindowExpr, PartitionBatches, PartitionWindowAggStates, WindowAggState,
    WindowState,
};
use crate::{expressions::PhysicalSortExpr, PhysicalExpr};
use crate::{window::WindowExpr, AggregateExpr};

use super::window_frame_state::WindowFrameContext;

/// A window expr that takes the form of an aggregate function
#[derive(Debug)]
pub struct SlidingAggregateWindowExpr {
    aggregate: Arc<dyn AggregateExpr>,
    partition_by: Vec<Arc<dyn PhysicalExpr>>,
    order_by: Vec<PhysicalSortExpr>,
    window_frame: Arc<WindowFrame>,
}

impl SlidingAggregateWindowExpr {
    /// create a new aggregate window function expression
    pub fn new(
        aggregate: Arc<dyn AggregateExpr>,
        partition_by: &[Arc<dyn PhysicalExpr>],
        order_by: &[PhysicalSortExpr],
        window_frame: Arc<WindowFrame>,
    ) -> Self {
        Self {
            aggregate,
            partition_by: partition_by.to_vec(),
            order_by: order_by.to_vec(),
            window_frame,
        }
    }

    /// Get aggregate expr of AggregateWindowExpr
    pub fn get_aggregate_expr(&self) -> &Arc<dyn AggregateExpr> {
        &self.aggregate
    }
}

/// peer based evaluation based on the fact that batch is pre-sorted given the sort columns
/// and then per partition point we'll evaluate the peer group (e.g. SUM or MAX gives the same
/// results for peers) and concatenate the results.

impl WindowExpr for SlidingAggregateWindowExpr {
    /// Return a reference to Any that can be used for downcasting
    fn as_any(&self) -> &dyn Any {
        self
    }

    fn field(&self) -> Result<Field> {
        self.aggregate.field()
    }

    fn name(&self) -> &str {
        self.aggregate.name()
    }

    fn expressions(&self) -> Vec<Arc<dyn PhysicalExpr>> {
        self.aggregate.expressions()
    }

    fn evaluate(&self, batch: &RecordBatch) -> Result<ArrayRef> {
        let mut accumulator = self.aggregate.create_sliding_accumulator()?;

        let mut window_frame_ctx = WindowFrameContext::new(&self.window_frame);
        let mut last_range = Range { start: 0, end: 0 };
        let mut idx = 0;
        self.get_result_column(
            &mut accumulator,
            batch,
            &mut window_frame_ctx,
            &mut last_range,
            &mut idx,
            true,
        )
    }

    fn evaluate_stateful(
        &self,
        partition_batches: &PartitionBatches,
        window_agg_state: &mut PartitionWindowAggStates,
    ) -> Result<()> {
        let field = self.aggregate.field()?;
        let out_type = field.data_type();
        for (partition_row, partition_batch_state) in partition_batches.iter() {
            if !window_agg_state.contains_key(partition_row) {
                let accumulator = self.aggregate.create_sliding_accumulator()?;
                window_agg_state.insert(
                    partition_row.clone(),
                    WindowState {
                        state: WindowAggState::new(
                            out_type,
                            WindowFunctionState::AggregateState(vec![]),
                        )?,
                        window_fn: WindowFn::Aggregate(accumulator),
                    },
                );
            };
            let window_state =
                window_agg_state.get_mut(partition_row).ok_or_else(|| {
                    DataFusionError::Execution("Cannot find state".to_string())
                })?;
            let accumulator = match &mut window_state.window_fn {
                WindowFn::Aggregate(accumulator) => accumulator,
                _ => unreachable!(),
            };
            let mut state = &mut window_state.state;
            state.is_end = partition_batch_state.is_end;

            let mut idx = state.last_calculated_index;
            let mut last_range = state.window_frame_range.clone();
            let mut window_frame_ctx = WindowFrameContext::new(&self.window_frame);
            let out_col = self.get_result_column(
                accumulator,
                &partition_batch_state.record_batch,
                &mut window_frame_ctx,
                &mut last_range,
                &mut idx,
                state.is_end,
            )?;
            state.last_calculated_index = idx;
            state.window_frame_range = last_range.clone();

            state.out_col = concat(&[&state.out_col, &out_col])?;
            let num_rows = partition_batch_state.record_batch.num_rows();
            state.n_row_result_missing = num_rows - state.last_calculated_index;

            state.window_function_state =
                WindowFunctionState::AggregateState(accumulator.state()?);
        }
        Ok(())
    }

    fn partition_by(&self) -> &[Arc<dyn PhysicalExpr>] {
        &self.partition_by
    }

    fn order_by(&self) -> &[PhysicalSortExpr] {
        &self.order_by
    }

    fn get_window_frame(&self) -> &Arc<WindowFrame> {
        &self.window_frame
    }

    fn get_reverse_expr(&self) -> Option<Arc<dyn WindowExpr>> {
        self.aggregate.reverse_expr().map(|reverse_expr| {
            let reverse_window_frame = self.window_frame.reverse();
            if reverse_window_frame.start_bound.is_unbounded() {
                Arc::new(AggregateWindowExpr::new(
                    reverse_expr,
                    &self.partition_by.clone(),
                    &reverse_order_bys(&self.order_by),
                    Arc::new(self.window_frame.reverse()),
                )) as _
            } else {
                Arc::new(SlidingAggregateWindowExpr::new(
                    reverse_expr,
                    &self.partition_by.clone(),
                    &reverse_order_bys(&self.order_by),
                    Arc::new(self.window_frame.reverse()),
                )) as _
            }
        })
    }

    fn uses_bounded_memory(&self) -> bool {
        // NOTE: Currently, groups queries do not support the bounded memory variant.
        self.aggregate.supports_bounded_execution()
            && !self.window_frame.start_bound.is_unbounded()
            && !self.window_frame.end_bound.is_unbounded()
            && !matches!(self.window_frame.units, WindowFrameUnits::Groups)
    }
}

impl SlidingAggregateWindowExpr {
    /// For given range calculate accumulator result inside range on value_slice and
    /// update accumulator state
    fn get_aggregate_result_inside_range(
        &self,
        last_range: &Range<usize>,
        cur_range: &Range<usize>,
        value_slice: &[ArrayRef],
        accumulator: &mut Box<dyn Accumulator>,
    ) -> Result<ScalarValue> {
        let value = if cur_range.start == cur_range.end {
            // We produce None if the window is empty.
            ScalarValue::try_from(self.aggregate.field()?.data_type())?
        } else {
            // Accumulate any new rows that have entered the window:
            let update_bound = cur_range.end - last_range.end;
            if update_bound > 0 {
                let update: Vec<ArrayRef> = value_slice
                    .iter()
                    .map(|v| v.slice(last_range.end, update_bound))
                    .collect();
                accumulator.update_batch(&update)?
            }
            // Remove rows that have now left the window:
            let retract_bound = cur_range.start - last_range.start;
            if retract_bound > 0 {
                let retract: Vec<ArrayRef> = value_slice
                    .iter()
                    .map(|v| v.slice(last_range.start, retract_bound))
                    .collect();
                accumulator.retract_batch(&retract)?
            }
            accumulator.evaluate()?
        };
        Ok(value)
    }

    fn get_result_column(
        &self,
        accumulator: &mut Box<dyn Accumulator>,
        record_batch: &RecordBatch,
        window_frame_ctx: &mut WindowFrameContext,
        last_range: &mut Range<usize>,
        idx: &mut usize,
        is_end: bool,
    ) -> Result<ArrayRef> {
        let (values, order_bys) = self.get_values_orderbys(record_batch)?;
        // We iterate on each row to perform a running calculation.
        let length = values[0].len();
        let sort_options: Vec<SortOptions> =
            self.order_by.iter().map(|o| o.options).collect();
        let mut row_wise_results: Vec<ScalarValue> = vec![];
        let field = self.aggregate.field()?;
        let out_type = field.data_type();
        while *idx < length {
            let cur_range = window_frame_ctx.calculate_range(
                &order_bys,
                &sort_options,
                length,
                *idx,
            )?;
            // Exit if range end index is length, need kind of flag to stop
            if cur_range.end == length && !is_end {
                break;
            }
            let value = self.get_aggregate_result_inside_range(
                last_range,
                &cur_range,
                &values,
                accumulator,
            )?;
            row_wise_results.push(value);
            last_range.start = cur_range.start;
            last_range.end = cur_range.end;
            *idx += 1;
        }
        Ok(if row_wise_results.is_empty() {
            ScalarValue::try_from(out_type)?.to_array_of_size(0)
        } else {
            ScalarValue::iter_to_array(row_wise_results.into_iter())?
        })
    }
}