1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
use crate::window::partition_evaluator::PartitionEvaluator;
use crate::window::BuiltInWindowFunctionExpr;
use crate::PhysicalExpr;
use arrow::array::{ArrayRef, UInt64Array};
use arrow::datatypes::{DataType, Field};
use arrow::record_batch::RecordBatch;
use datafusion_common::Result;
use std::any::Any;
use std::ops::Range;
use std::sync::Arc;
#[derive(Debug)]
pub struct RowNumber {
name: String,
}
impl RowNumber {
pub fn new(name: impl Into<String>) -> Self {
Self { name: name.into() }
}
}
impl BuiltInWindowFunctionExpr for RowNumber {
fn as_any(&self) -> &dyn Any {
self
}
fn field(&self) -> Result<Field> {
let nullable = false;
let data_type = DataType::UInt64;
Ok(Field::new(self.name(), data_type, nullable))
}
fn expressions(&self) -> Vec<Arc<dyn PhysicalExpr>> {
vec![]
}
fn name(&self) -> &str {
&self.name
}
fn create_evaluator(
&self,
_batch: &RecordBatch,
) -> Result<Box<dyn PartitionEvaluator>> {
Ok(Box::new(NumRowsEvaluator::default()))
}
}
#[derive(Default)]
pub(crate) struct NumRowsEvaluator {}
impl PartitionEvaluator for NumRowsEvaluator {
fn evaluate_partition(&self, partition: Range<usize>) -> Result<ArrayRef> {
let num_rows = partition.end - partition.start;
Ok(Arc::new(UInt64Array::from_iter_values(
1..(num_rows as u64) + 1,
)))
}
}
#[cfg(test)]
mod tests {
use super::*;
use arrow::record_batch::RecordBatch;
use arrow::{array::*, datatypes::*};
use datafusion_common::Result;
#[test]
fn row_number_all_null() -> Result<()> {
let arr: ArrayRef = Arc::new(BooleanArray::from(vec![
None, None, None, None, None, None, None, None,
]));
let schema = Schema::new(vec![Field::new("arr", DataType::Boolean, true)]);
let batch = RecordBatch::try_new(Arc::new(schema), vec![arr])?;
let row_number = RowNumber::new("row_number".to_owned());
let result = row_number.create_evaluator(&batch)?.evaluate(vec![0..8])?;
assert_eq!(1, result.len());
let result = result[0].as_any().downcast_ref::<UInt64Array>().unwrap();
let result = result.values();
assert_eq!(vec![1, 2, 3, 4, 5, 6, 7, 8], result);
Ok(())
}
#[test]
fn row_number_all_values() -> Result<()> {
let arr: ArrayRef = Arc::new(BooleanArray::from(vec![
true, false, true, false, false, true, false, true,
]));
let schema = Schema::new(vec![Field::new("arr", DataType::Boolean, false)]);
let batch = RecordBatch::try_new(Arc::new(schema), vec![arr])?;
let row_number = RowNumber::new("row_number".to_owned());
let result = row_number.create_evaluator(&batch)?.evaluate(vec![0..8])?;
assert_eq!(1, result.len());
let result = result[0].as_any().downcast_ref::<UInt64Array>().unwrap();
let result = result.values();
assert_eq!(vec![1, 2, 3, 4, 5, 6, 7, 8], result);
Ok(())
}
}