datafusion_physical_expr_common/
physical_expr.rs

1// Licensed to the Apache Software Foundation (ASF) under one
2// or more contributor license agreements.  See the NOTICE file
3// distributed with this work for additional information
4// regarding copyright ownership.  The ASF licenses this file
5// to you under the Apache License, Version 2.0 (the
6// "License"); you may not use this file except in compliance
7// with the License.  You may obtain a copy of the License at
8//
9//   http://www.apache.org/licenses/LICENSE-2.0
10//
11// Unless required by applicable law or agreed to in writing,
12// software distributed under the License is distributed on an
13// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
14// KIND, either express or implied.  See the License for the
15// specific language governing permissions and limitations
16// under the License.
17
18use std::any::Any;
19use std::fmt;
20use std::fmt::{Debug, Display, Formatter};
21use std::hash::{Hash, Hasher};
22use std::sync::Arc;
23
24use crate::utils::scatter;
25
26use arrow::array::BooleanArray;
27use arrow::compute::filter_record_batch;
28use arrow::datatypes::{DataType, Field, FieldRef, Schema};
29use arrow::record_batch::RecordBatch;
30use datafusion_common::tree_node::{
31    Transformed, TransformedResult, TreeNode, TreeNodeRecursion,
32};
33use datafusion_common::{internal_err, not_impl_err, Result, ScalarValue};
34use datafusion_expr_common::columnar_value::ColumnarValue;
35use datafusion_expr_common::interval_arithmetic::Interval;
36use datafusion_expr_common::sort_properties::ExprProperties;
37use datafusion_expr_common::statistics::Distribution;
38
39use itertools::izip;
40
41/// Shared [`PhysicalExpr`].
42pub type PhysicalExprRef = Arc<dyn PhysicalExpr>;
43
44/// [`PhysicalExpr`]s represent expressions such as `A + 1` or `CAST(c1 AS int)`.
45///
46/// `PhysicalExpr` knows its type, nullability and can be evaluated directly on
47/// a [`RecordBatch`] (see [`Self::evaluate`]).
48///
49/// `PhysicalExpr` are the physical counterpart to [`Expr`] used in logical
50/// planning. They are typically created from [`Expr`] by a [`PhysicalPlanner`]
51/// invoked from a higher level API
52///
53/// Some important examples of `PhysicalExpr` are:
54/// * [`Column`]: Represents a column at a given index in a RecordBatch
55///
56/// To create `PhysicalExpr` from  `Expr`, see
57/// * [`SessionContext::create_physical_expr`]: A high level API
58/// * [`create_physical_expr`]: A low level API
59///
60/// # Formatting `PhysicalExpr` as strings
61/// There are three ways to format `PhysicalExpr` as a string:
62/// * [`Debug`]: Standard Rust debugging format (e.g. `Constant { value: ... }`)
63/// * [`Display`]: Detailed SQL-like format that shows expression structure (e.g. (`Utf8 ("foobar")`). This is often used for debugging and tests
64/// * [`Self::fmt_sql`]: SQL-like human readable format (e.g. ('foobar')`), See also [`sql_fmt`]
65///
66/// [`SessionContext::create_physical_expr`]: https://docs.rs/datafusion/latest/datafusion/execution/context/struct.SessionContext.html#method.create_physical_expr
67/// [`PhysicalPlanner`]: https://docs.rs/datafusion/latest/datafusion/physical_planner/trait.PhysicalPlanner.html
68/// [`Expr`]: https://docs.rs/datafusion/latest/datafusion/logical_expr/enum.Expr.html
69/// [`create_physical_expr`]: https://docs.rs/datafusion/latest/datafusion/physical_expr/fn.create_physical_expr.html
70/// [`Column`]: https://docs.rs/datafusion/latest/datafusion/physical_expr/expressions/struct.Column.html
71pub trait PhysicalExpr: Send + Sync + Display + Debug + DynEq + DynHash {
72    /// Returns the physical expression as [`Any`] so that it can be
73    /// downcast to a specific implementation.
74    fn as_any(&self) -> &dyn Any;
75    /// Get the data type of this expression, given the schema of the input
76    fn data_type(&self, input_schema: &Schema) -> Result<DataType> {
77        Ok(self.return_field(input_schema)?.data_type().to_owned())
78    }
79    /// Determine whether this expression is nullable, given the schema of the input
80    fn nullable(&self, input_schema: &Schema) -> Result<bool> {
81        Ok(self.return_field(input_schema)?.is_nullable())
82    }
83    /// Evaluate an expression against a RecordBatch
84    fn evaluate(&self, batch: &RecordBatch) -> Result<ColumnarValue>;
85    /// The output field associated with this expression
86    fn return_field(&self, input_schema: &Schema) -> Result<FieldRef> {
87        Ok(Arc::new(Field::new(
88            format!("{self}"),
89            self.data_type(input_schema)?,
90            self.nullable(input_schema)?,
91        )))
92    }
93    /// Evaluate an expression against a RecordBatch after first applying a
94    /// validity array
95    fn evaluate_selection(
96        &self,
97        batch: &RecordBatch,
98        selection: &BooleanArray,
99    ) -> Result<ColumnarValue> {
100        let tmp_batch = filter_record_batch(batch, selection)?;
101
102        let tmp_result = self.evaluate(&tmp_batch)?;
103
104        if batch.num_rows() == tmp_batch.num_rows() {
105            // All values from the `selection` filter are true.
106            Ok(tmp_result)
107        } else if let ColumnarValue::Array(a) = tmp_result {
108            scatter(selection, a.as_ref()).map(ColumnarValue::Array)
109        } else {
110            Ok(tmp_result)
111        }
112    }
113
114    /// Get a list of child PhysicalExpr that provide the input for this expr.
115    fn children(&self) -> Vec<&Arc<dyn PhysicalExpr>>;
116
117    /// Returns a new PhysicalExpr where all children were replaced by new exprs.
118    fn with_new_children(
119        self: Arc<Self>,
120        children: Vec<Arc<dyn PhysicalExpr>>,
121    ) -> Result<Arc<dyn PhysicalExpr>>;
122
123    /// Computes the output interval for the expression, given the input
124    /// intervals.
125    ///
126    /// # Parameters
127    ///
128    /// * `children` are the intervals for the children (inputs) of this
129    ///   expression.
130    ///
131    /// # Returns
132    ///
133    /// A `Result` containing the output interval for the expression in
134    /// case of success, or an error object in case of failure.
135    ///
136    /// # Example
137    ///
138    /// If the expression is `a + b`, and the input intervals are `a: [1, 2]`
139    /// and `b: [3, 4]`, then the output interval would be `[4, 6]`.
140    fn evaluate_bounds(&self, _children: &[&Interval]) -> Result<Interval> {
141        not_impl_err!("Not implemented for {self}")
142    }
143
144    /// Updates bounds for child expressions, given a known interval for this
145    /// expression.
146    ///
147    /// This is used to propagate constraints down through an expression tree.
148    ///
149    /// # Parameters
150    ///
151    /// * `interval` is the currently known interval for this expression.
152    /// * `children` are the current intervals for the children of this expression.
153    ///
154    /// # Returns
155    ///
156    /// A `Result` containing a `Vec` of new intervals for the children (in order)
157    /// in case of success, or an error object in case of failure.
158    ///
159    /// If constraint propagation reveals an infeasibility for any child, returns
160    /// [`None`]. If none of the children intervals change as a result of
161    /// propagation, may return an empty vector instead of cloning `children`.
162    /// This is the default (and conservative) return value.
163    ///
164    /// # Example
165    ///
166    /// If the expression is `a + b`, the current `interval` is `[4, 5]` and the
167    /// inputs `a` and `b` are respectively given as `[0, 2]` and `[-∞, 4]`, then
168    /// propagation would return `[0, 2]` and `[2, 4]` as `b` must be at least
169    /// `2` to make the output at least `4`.
170    fn propagate_constraints(
171        &self,
172        _interval: &Interval,
173        _children: &[&Interval],
174    ) -> Result<Option<Vec<Interval>>> {
175        Ok(Some(vec![]))
176    }
177
178    /// Computes the output statistics for the expression, given the input
179    /// statistics.
180    ///
181    /// # Parameters
182    ///
183    /// * `children` are the statistics for the children (inputs) of this
184    ///   expression.
185    ///
186    /// # Returns
187    ///
188    /// A `Result` containing the output statistics for the expression in
189    /// case of success, or an error object in case of failure.
190    ///
191    /// Expressions (should) implement this function and utilize the independence
192    /// assumption, match on children distribution types and compute the output
193    /// statistics accordingly. The default implementation simply creates an
194    /// unknown output distribution by combining input ranges. This logic loses
195    /// distribution information, but is a safe default.
196    fn evaluate_statistics(&self, children: &[&Distribution]) -> Result<Distribution> {
197        let children_ranges = children
198            .iter()
199            .map(|c| c.range())
200            .collect::<Result<Vec<_>>>()?;
201        let children_ranges_refs = children_ranges.iter().collect::<Vec<_>>();
202        let output_interval = self.evaluate_bounds(children_ranges_refs.as_slice())?;
203        let dt = output_interval.data_type();
204        if dt.eq(&DataType::Boolean) {
205            let p = if output_interval.eq(&Interval::CERTAINLY_TRUE) {
206                ScalarValue::new_one(&dt)
207            } else if output_interval.eq(&Interval::CERTAINLY_FALSE) {
208                ScalarValue::new_zero(&dt)
209            } else {
210                ScalarValue::try_from(&dt)
211            }?;
212            Distribution::new_bernoulli(p)
213        } else {
214            Distribution::new_from_interval(output_interval)
215        }
216    }
217
218    /// Updates children statistics using the given parent statistic for this
219    /// expression.
220    ///
221    /// This is used to propagate statistics down through an expression tree.
222    ///
223    /// # Parameters
224    ///
225    /// * `parent` is the currently known statistics for this expression.
226    /// * `children` are the current statistics for the children of this expression.
227    ///
228    /// # Returns
229    ///
230    /// A `Result` containing a `Vec` of new statistics for the children (in order)
231    /// in case of success, or an error object in case of failure.
232    ///
233    /// If statistics propagation reveals an infeasibility for any child, returns
234    /// [`None`]. If none of the children statistics change as a result of
235    /// propagation, may return an empty vector instead of cloning `children`.
236    /// This is the default (and conservative) return value.
237    ///
238    /// Expressions (should) implement this function and apply Bayes rule to
239    /// reconcile and update parent/children statistics. This involves utilizing
240    /// the independence assumption, and matching on distribution types. The
241    /// default implementation simply creates an unknown distribution if it can
242    /// narrow the range by propagating ranges. This logic loses distribution
243    /// information, but is a safe default.
244    fn propagate_statistics(
245        &self,
246        parent: &Distribution,
247        children: &[&Distribution],
248    ) -> Result<Option<Vec<Distribution>>> {
249        let children_ranges = children
250            .iter()
251            .map(|c| c.range())
252            .collect::<Result<Vec<_>>>()?;
253        let children_ranges_refs = children_ranges.iter().collect::<Vec<_>>();
254        let parent_range = parent.range()?;
255        let Some(propagated_children) =
256            self.propagate_constraints(&parent_range, children_ranges_refs.as_slice())?
257        else {
258            return Ok(None);
259        };
260        izip!(propagated_children.into_iter(), children_ranges, children)
261            .map(|(new_interval, old_interval, child)| {
262                if new_interval == old_interval {
263                    // We weren't able to narrow the range, preserve the old statistics.
264                    Ok((*child).clone())
265                } else if new_interval.data_type().eq(&DataType::Boolean) {
266                    let dt = old_interval.data_type();
267                    let p = if new_interval.eq(&Interval::CERTAINLY_TRUE) {
268                        ScalarValue::new_one(&dt)
269                    } else if new_interval.eq(&Interval::CERTAINLY_FALSE) {
270                        ScalarValue::new_zero(&dt)
271                    } else {
272                        unreachable!("Given that we have a range reduction for a boolean interval, we should have certainty")
273                    }?;
274                    Distribution::new_bernoulli(p)
275                } else {
276                    Distribution::new_from_interval(new_interval)
277                }
278            })
279            .collect::<Result<_>>()
280            .map(Some)
281    }
282
283    /// Calculates the properties of this [`PhysicalExpr`] based on its
284    /// children's properties (i.e. order and range), recursively aggregating
285    /// the information from its children. In cases where the [`PhysicalExpr`]
286    /// has no children (e.g., `Literal` or `Column`), these properties should
287    /// be specified externally, as the function defaults to unknown properties.
288    fn get_properties(&self, _children: &[ExprProperties]) -> Result<ExprProperties> {
289        Ok(ExprProperties::new_unknown())
290    }
291
292    /// Format this `PhysicalExpr` in nice human readable "SQL" format
293    ///
294    /// Specifically, this format is designed to be readable by humans, at the
295    /// expense of details. Use `Display` or `Debug` for more detailed
296    /// representation.
297    ///
298    /// See the [`fmt_sql`] function for an example of printing `PhysicalExpr`s as SQL.
299    ///
300    fn fmt_sql(&self, f: &mut Formatter<'_>) -> fmt::Result;
301
302    /// Take a snapshot of this `PhysicalExpr`, if it is dynamic.
303    ///
304    /// "Dynamic" in this case means containing references to structures that may change
305    /// during plan execution, such as hash tables.
306    ///
307    /// This method is used to capture the current state of `PhysicalExpr`s that may contain
308    /// dynamic references to other operators in order to serialize it over the wire
309    /// or treat it via downcast matching.
310    ///
311    /// You should not call this method directly as it does not handle recursion.
312    /// Instead use [`snapshot_physical_expr`] to handle recursion and capture the
313    /// full state of the `PhysicalExpr`.
314    ///
315    /// This is expected to return "simple" expressions that do not have mutable state
316    /// and are composed of DataFusion's built-in `PhysicalExpr` implementations.
317    /// Callers however should *not* assume anything about the returned expressions
318    /// since callers and implementers may not agree on what "simple" or "built-in"
319    /// means.
320    /// In other words, if you need to serialize a `PhysicalExpr` across the wire
321    /// you should call this method and then try to serialize the result,
322    /// but you should handle unknown or unexpected `PhysicalExpr` implementations gracefully
323    /// just as if you had not called this method at all.
324    ///
325    /// In particular, consider:
326    /// * A `PhysicalExpr` that references the current state of a `datafusion::physical_plan::TopK`
327    ///   that is involved in a query with `SELECT * FROM t1 ORDER BY a LIMIT 10`.
328    ///   This function may return something like `a >= 12`.
329    /// * A `PhysicalExpr` that references the current state of a `datafusion::physical_plan::joins::HashJoinExec`
330    ///   from a query such as `SELECT * FROM t1 JOIN t2 ON t1.a = t2.b`.
331    ///   This function may return something like `t2.b IN (1, 5, 7)`.
332    ///
333    /// A system or function that can only deal with a hardcoded set of `PhysicalExpr` implementations
334    /// or needs to serialize this state to bytes may not be able to handle these dynamic references.
335    /// In such cases, we should return a simplified version of the `PhysicalExpr` that does not
336    /// contain these dynamic references.
337    ///
338    /// Systems that implement remote execution of plans, e.g. serialize a portion of the query plan
339    /// and send it across the wire to a remote executor may want to call this method after
340    /// every batch on the source side and brodcast / update the current snaphot to the remote executor.
341    ///
342    /// Note for implementers: this method should *not* handle recursion.
343    /// Recursion is handled in [`snapshot_physical_expr`].
344    fn snapshot(&self) -> Result<Option<Arc<dyn PhysicalExpr>>> {
345        // By default, we return None to indicate that this PhysicalExpr does not
346        // have any dynamic references or state.
347        // This is a safe default behavior.
348        Ok(None)
349    }
350
351    /// Returns the generation of this `PhysicalExpr` for snapshotting purposes.
352    /// The generation is an arbitrary u64 that can be used to track changes
353    /// in the state of the `PhysicalExpr` over time without having to do an exhaustive comparison.
354    /// This is useful to avoid unecessary computation or serialization if there are no changes to the expression.
355    /// In particular, dynamic expressions that may change over time; this allows cheap checks for changes.
356    /// Static expressions that do not change over time should return 0, as does the default implementation.
357    /// You should not call this method directly as it does not handle recursion.
358    /// Instead use [`snapshot_generation`] to handle recursion and capture the
359    /// full state of the `PhysicalExpr`.
360    fn snapshot_generation(&self) -> u64 {
361        // By default, we return 0 to indicate that this PhysicalExpr does not
362        // have any dynamic references or state.
363        // Since the recursive algorithm XORs the generations of all children the overall
364        // generation will be 0 if no children have a non-zero generation, meaning that
365        // static expressions will always return 0.
366        0
367    }
368}
369
370/// [`PhysicalExpr`] can't be constrained by [`Eq`] directly because it must remain object
371/// safe. To ease implementation, blanket implementation is provided for [`Eq`] types.
372pub trait DynEq {
373    fn dyn_eq(&self, other: &dyn Any) -> bool;
374}
375
376impl<T: Eq + Any> DynEq for T {
377    fn dyn_eq(&self, other: &dyn Any) -> bool {
378        other.downcast_ref::<Self>() == Some(self)
379    }
380}
381
382impl PartialEq for dyn PhysicalExpr {
383    fn eq(&self, other: &Self) -> bool {
384        self.dyn_eq(other.as_any())
385    }
386}
387
388impl Eq for dyn PhysicalExpr {}
389
390/// [`PhysicalExpr`] can't be constrained by [`Hash`] directly because it must remain
391/// object safe. To ease implementation blanket implementation is provided for [`Hash`]
392/// types.
393pub trait DynHash {
394    fn dyn_hash(&self, _state: &mut dyn Hasher);
395}
396
397impl<T: Hash + Any> DynHash for T {
398    fn dyn_hash(&self, mut state: &mut dyn Hasher) {
399        self.type_id().hash(&mut state);
400        self.hash(&mut state)
401    }
402}
403
404impl Hash for dyn PhysicalExpr {
405    fn hash<H: Hasher>(&self, state: &mut H) {
406        self.dyn_hash(state);
407    }
408}
409
410/// Returns a copy of this expr if we change any child according to the pointer comparison.
411/// The size of `children` must be equal to the size of `PhysicalExpr::children()`.
412pub fn with_new_children_if_necessary(
413    expr: Arc<dyn PhysicalExpr>,
414    children: Vec<Arc<dyn PhysicalExpr>>,
415) -> Result<Arc<dyn PhysicalExpr>> {
416    let old_children = expr.children();
417    if children.len() != old_children.len() {
418        internal_err!("PhysicalExpr: Wrong number of children")
419    } else if children.is_empty()
420        || children
421            .iter()
422            .zip(old_children.iter())
423            .any(|(c1, c2)| !Arc::ptr_eq(c1, c2))
424    {
425        Ok(expr.with_new_children(children)?)
426    } else {
427        Ok(expr)
428    }
429}
430
431#[deprecated(since = "44.0.0")]
432pub fn down_cast_any_ref(any: &dyn Any) -> &dyn Any {
433    if any.is::<Arc<dyn PhysicalExpr>>() {
434        any.downcast_ref::<Arc<dyn PhysicalExpr>>()
435            .unwrap()
436            .as_any()
437    } else if any.is::<Box<dyn PhysicalExpr>>() {
438        any.downcast_ref::<Box<dyn PhysicalExpr>>()
439            .unwrap()
440            .as_any()
441    } else {
442        any
443    }
444}
445
446/// Returns [`Display`] able a list of [`PhysicalExpr`]
447///
448/// Example output: `[a + 1, b]`
449pub fn format_physical_expr_list<T>(exprs: T) -> impl Display
450where
451    T: IntoIterator,
452    T::Item: Display,
453    T::IntoIter: Clone,
454{
455    struct DisplayWrapper<I>(I)
456    where
457        I: Iterator + Clone,
458        I::Item: Display;
459
460    impl<I> Display for DisplayWrapper<I>
461    where
462        I: Iterator + Clone,
463        I::Item: Display,
464    {
465        fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
466            let mut iter = self.0.clone();
467            write!(f, "[")?;
468            if let Some(expr) = iter.next() {
469                write!(f, "{expr}")?;
470            }
471            for expr in iter {
472                write!(f, ", {expr}")?;
473            }
474            write!(f, "]")?;
475            Ok(())
476        }
477    }
478
479    DisplayWrapper(exprs.into_iter())
480}
481
482/// Prints a [`PhysicalExpr`] in a SQL-like format
483///
484/// # Example
485/// ```
486/// # // The boiler plate needed to create a `PhysicalExpr` for the example
487/// # use std::any::Any;
488/// use std::collections::HashMap;
489/// # use std::fmt::Formatter;
490/// # use std::sync::Arc;
491/// # use arrow::array::RecordBatch;
492/// # use arrow::datatypes::{DataType, Field, FieldRef, Schema};
493/// # use datafusion_common::Result;
494/// # use datafusion_expr_common::columnar_value::ColumnarValue;
495/// # use datafusion_physical_expr_common::physical_expr::{fmt_sql, DynEq, PhysicalExpr};
496/// # #[derive(Debug, Hash, PartialOrd, PartialEq)]
497/// # struct MyExpr {}
498/// # impl PhysicalExpr for MyExpr {fn as_any(&self) -> &dyn Any { unimplemented!() }
499/// # fn data_type(&self, input_schema: &Schema) -> Result<DataType> { unimplemented!() }
500/// # fn nullable(&self, input_schema: &Schema) -> Result<bool> { unimplemented!() }
501/// # fn evaluate(&self, batch: &RecordBatch) -> Result<ColumnarValue> { unimplemented!() }
502/// # fn return_field(&self, input_schema: &Schema) -> Result<FieldRef> { unimplemented!() }
503/// # fn children(&self) -> Vec<&Arc<dyn PhysicalExpr>>{ unimplemented!() }
504/// # fn with_new_children(self: Arc<Self>, children: Vec<Arc<dyn PhysicalExpr>>) -> Result<Arc<dyn PhysicalExpr>> { unimplemented!() }
505/// # fn fmt_sql(&self, f: &mut Formatter<'_>) -> std::fmt::Result { write!(f, "CASE a > b THEN 1 ELSE 0 END") }
506/// # }
507/// # impl std::fmt::Display for MyExpr {fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result { unimplemented!() } }
508/// # impl DynEq for MyExpr {fn dyn_eq(&self, other: &dyn Any) -> bool { unimplemented!() } }
509/// # fn make_physical_expr() -> Arc<dyn PhysicalExpr> { Arc::new(MyExpr{}) }
510/// let expr: Arc<dyn PhysicalExpr> = make_physical_expr();
511/// // wrap the expression in `sql_fmt` which can be used with
512/// // `format!`, `to_string()`, etc
513/// let expr_as_sql = fmt_sql(expr.as_ref());
514/// assert_eq!(
515///   "The SQL: CASE a > b THEN 1 ELSE 0 END",
516///   format!("The SQL: {expr_as_sql}")
517/// );
518/// ```
519pub fn fmt_sql(expr: &dyn PhysicalExpr) -> impl Display + '_ {
520    struct Wrapper<'a> {
521        expr: &'a dyn PhysicalExpr,
522    }
523
524    impl Display for Wrapper<'_> {
525        fn fmt(&self, f: &mut Formatter) -> fmt::Result {
526            self.expr.fmt_sql(f)?;
527            Ok(())
528        }
529    }
530
531    Wrapper { expr }
532}
533
534/// Take a snapshot of the given `PhysicalExpr` if it is dynamic.
535///
536/// Take a snapshot of this `PhysicalExpr` if it is dynamic.
537/// This is used to capture the current state of `PhysicalExpr`s that may contain
538/// dynamic references to other operators in order to serialize it over the wire
539/// or treat it via downcast matching.
540///
541/// See the documentation of [`PhysicalExpr::snapshot`] for more details.
542///
543/// # Returns
544///
545/// Returns an `Option<Arc<dyn PhysicalExpr>>` which is the snapshot of the
546/// `PhysicalExpr` if it is dynamic. If the `PhysicalExpr` does not have
547/// any dynamic references or state, it returns `None`.
548pub fn snapshot_physical_expr(
549    expr: Arc<dyn PhysicalExpr>,
550) -> Result<Arc<dyn PhysicalExpr>> {
551    expr.transform_up(|e| {
552        if let Some(snapshot) = e.snapshot()? {
553            Ok(Transformed::yes(snapshot))
554        } else {
555            Ok(Transformed::no(Arc::clone(&e)))
556        }
557    })
558    .data()
559}
560
561/// Check the generation of this `PhysicalExpr`.
562/// Dynamic `PhysicalExpr`s may have a generation that is incremented
563/// every time the state of the `PhysicalExpr` changes.
564/// If the generation changes that means this `PhysicalExpr` or one of its children
565/// has changed since the last time it was evaluated.
566///
567/// This algorithm will not produce collisions as long as the structure of the
568/// `PhysicalExpr` does not change and no `PhysicalExpr` decrements its own generation.
569pub fn snapshot_generation(expr: &Arc<dyn PhysicalExpr>) -> u64 {
570    let mut generation = 0u64;
571    expr.apply(|e| {
572        // Add the current generation of the `PhysicalExpr` to our global generation.
573        generation = generation.wrapping_add(e.snapshot_generation());
574        Ok(TreeNodeRecursion::Continue)
575    })
576    .expect("this traversal is infallible");
577
578    generation
579}
580
581/// Check if the given `PhysicalExpr` is dynamic.
582/// Internally this calls [`snapshot_generation`] to check if the generation is non-zero,
583/// any dynamic `PhysicalExpr` should have a non-zero generation.
584pub fn is_dynamic_physical_expr(expr: &Arc<dyn PhysicalExpr>) -> bool {
585    // If the generation is non-zero, then this `PhysicalExpr` is dynamic.
586    snapshot_generation(expr) != 0
587}